Video games lead to new paths to treat cancer, other diseases

Feb 16, 2012

The cure for cancer comes down to this: video games.

In a research lab at Wake Forest University, biophysicist and computer scientist Samuel Cho uses graphics processing units (GPUs), the technology that makes videogame images so realistic, to simulate the inner workings of .

"If it wasn't for gamers who kept buying these GPUs, the prices wouldn't have dropped, and we couldn't have used them for science," Cho says.

Now he can see exactly how the cells live, divide and die.

And that, Cho says, opens up possibilities for new targets for tumor-killing drugs.

Cho's most recent computer simulation, of a critical RNA molecule that is a component of the human telomerase enzyme, for the first time shows hidden states in the folding and unfolding of this molecule, giving scientists a far more accurate view of how it functions. The results of his research appear in the . Cho worked with colleagues from the University of Maryland and Zhejiang University in China for this study.

The human telomerase enzyme is found only in . It adds called telomeres to the ends of when cells divide – essentially preventing cells from dying.

"The cell keeps reproducing over and over, and that's the very definition of cancer," Cho says. "By knowing how telomerase folds and functions, we provide a new area for researching cancer treatments."

A new drug would stop the human telomerase enzyme from adding onto the DNA, so the tumor cell dies.

Cho, an assistant professor of physics and computer science, has turned his attention to videogaming technology and the bacterial ribosome – a molecular system 200 times larger than the human telomerase enzyme RNA molecule. His research group has begun to use graphics cards called GPUs to perform these cell simulations, which is much faster than using standard computing.

"We have hijacked this technology to perform simulations very, very quickly on much larger biomolecular systems," Cho says.

Without the GPUs, Cho estimated it would have taken him more than 40 years to run that simulation. Now, it will take him a few months.

Explore further: Cells build 'cupboards' to store metals

add to favorites email to friend print save as pdf

Related Stories

Scientists capture single cancer molecules at work

Dec 08, 2011

Researchers have revealed how a molecule called telomerase contributes to the control of the integrity of our genetic code, and when it is involved in the deregulation of the code, its important role in the development of ...

Scientists identify key component in cell replication

Jan 29, 2009

Last week, a presidential limousine shuttled Barack Obama to the most important job in his life. Scientists at the Stanford University School of Medicine have now identified a protein that does much the same for the telomerase ...

Recommended for you

'Global positioning' for molecules

3 hours ago

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.