UCI biologists turn up the heat on bacteria, discover mutation pattern

February 3, 2012

UCI biologists who spent a year growing 115 populations into 2,000 generations of E. coli at high heat discovered that the bacteria quickly adapted at the genetic level in two markedly different ways. The findings appear in the current issue of the journal Science.

The team included Brandon Gaut, chair of the Department of Ecology & Evolutionary Biology; Albert Bennett, dean of the School of Biological Sciences; and Anthony Long, professor of ecology & evolutionary biology.

"Temperature is a complex challenge for an organism to respond to because it can affect so many parts of the cellular process," Gaut said.

They chose to apply heat (108 F, 42 C) rather than cold because Bennett had previously done so with smaller populations.

"We knew it would work, but we wanted to do it on a much grander scale so we could see genetic patterns emerging," Gaut explained.

In the populations that survived, the team identified 1,331 mutations affecting more than 600 sites in the bacterial DNA. Few of the mutations were shared from to population, suggesting little overlap among their evolutionary paths.

But when the scientists stepped back and analyzed the mutations at the level of functional gene groups, they were surprised to find a strong pattern: E. coli populations adapted to the heat by mutating one of two pathways, but rarely both.

Long said the findings could - among other applications - aid in the development of microbes for better ethanol and other biofuels, as well as bugs designed to clean up various environments.

Explore further: Ready, set, mutate... and may the best microbe win

Related Stories

Ready, set, mutate... and may the best microbe win

May 18, 2006

Even with modern genomic tools, it's a daunting task to find a smoking gun for Darwinian evolution. The problem lies in being able to say not just when and how a specific gene mutated but also how that one genetic change ...

Mutations: When benefits level off

June 8, 2011

Beneficial mutations within a bacterial population accumulate during evolution, but performance tends to reach a plateau. Consequently, theoretical evolutionary models need to take into account a "braking effect" in expected ...

Recommended for you

Orangutan females prefer dominant, cheek-padded males

September 1, 2015

Unlike most mammals, mature male orangutans exhibit different facial characteristics: some develop large "cheek pads" on their faces; other males do not. A team of researchers studied the difference in reproductive success ...

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jmcanoy1860
5 / 5 (1) Feb 05, 2012
2 flavors of beneficial mutations to environmental stressors. Bookmarked as ammo against creationists (who should be along shortly)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.