Trojan horse bacteria use nanobodies to conquer sleeping sickness

Feb 14, 2012

Sleeping sickness, caused by the trypanosome Trypanosoma brucei, is transmitted to humans (and animals) via the bite of the tsetse fly. New research published in BioMed Central's open access journal Microbial Cell Factories uses a bacteria, which naturally lives in the fly, to release nanobodies (antibody fragments) against the trypanosome. These antibodies, which bind to the surface of the parasite, are the first stage in producing targeted nanobodies which could kill, or block, trypanosome development.

Sleeping sickness threatens millions of lives across sub-Saharan Africa. The first stage (haemolymphatic phase) of infection causes fever, headaches, aching joints and itching. The second stage (neurological phase), when the parasite crosses the , results in confusion, poor co-ordination and the which give the disease its name. Without treatment is fatal. However diagnosis and treatment are difficult and require specially trained staff. Trypanosome infection in cattle causes anemia and weight loss, which can lead to death of the anima. Together these have a serious impact on public health and agricultural development across Africa.

The bacterium (Sodalis glossinidius) is an endosymbiont, similar to the 'good bacteria' which populate human intestines, found in tsetse fly midgut, muscle, fat and salivary glands. They are passed from a mother to her offspring - consequently genetically modified bacteria should be spread down generations of flies once females are released into the wild. Researchers from Belgium genetically altered S. glossinidius bacteria so that they secreted a single domain antibody against a variant surface glycoprotein (VSG) of T. brucei. The growth of the mutated bacteria was unaltered, increasing their chances of survival once released.

Prof Van Den Abbeele, from the Institute of Tropical Medicine, Antwerp, explained, "When we looked at living under conditions that mimic the inside of the tsetse gut the Sodalis-expressed nanobodies were biologically active and bound all over the surface of the parasite. Now that we know this technique works we are looking at making nanobodies which will destroy or block development of the parasite in the tsetse fly gut."

The most recent epidemic occurred in 1970 and, despite continued efforts and falling numbers of new cases in that last decade, this disease has not yet gone away. This new technology provides hope against a devastating disease.

Explore further: Fighting bacteria—with viruses

More information: Expression and extracellular release of a functional anti-trypanosome Nanobody(R) in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Linda De Vooght, Guy Caljon, Benoit Stijlemans, Patrick De Beatselier, Marc Coosemans and Jan Van Den Abbeele. Microbial Cell Factories (in press)

add to favorites email to friend print save as pdf

Related Stories

Fly gut bacteria could control sleeping sickness

May 11, 2010

A new bacterial species, found in the gut of the fly that transmits African sleeping sickness, could be engineered to kill the parasite that causes the disease. The study, published in the International Journal of Systematic an ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0