Plant toughness: Key to cracking biofuels?

Feb 21, 2012

Along with photosynthesis, the plant cell wall is one of the features that most set plants apart from animals. A structural molecule called cellulose is necessary for the manufacture of these walls. Cellulose is synthesized in a semi-crystalline state that is essential for its function in the cell wall function, but the mechanisms controlling its crystallinity are poorly understood. New research from a team including current and former Carnegie scientists David Ehrhardt (Carnegie), Ryan Gutierrez (Carnegie), Chris Somerville (U.C. Berkeley), Seth Debolt (U. Kentucky), Dario Bonetta (U. Ontario) and Jose Estevez (U. de Buenos Aires) reveals key information about this process, as well as a means to reduce cellulose crystallinity, which is a key stumbling block in biofuels development. Their work is published online by Proceedings of the National Academy of Sciences for the week of February 20-24.

A plant's serves several essential functions including mechanical support: Allowing the plant to withstand the onslaughts of wind and weather, and permitting it to grow to great heights-- hundreds of feet for trees like the giant Redwood--and providing an essential barrier against invading pathogens. The cell wall is also the source of materials that have long been utilized by humans, including wood and cotton, in addition to serving as a potential source of biofuel energy.

Cellulose is the primary constituent of the cell wall and as such is the most abundant on the planet. It is also the key molecule providing the cell wall its essential mechanical properties.

To address the question of its manufacture in plant cells, the research team, led by Seth DeBolt of the University of Kentucky, focused on different aspects of cellulose-synthesizing complexes.

Working in conjunction with Chris Somerville, Ehrhardt developed a method for observing this complex by tagging it with a fluorescent marker derived from jellyfish and imaging the tagged protein using a technique called spinning disk confocal microscopy. This technique allows individual biosynthetic complexes to be seen and studied in living cells, producing an unusually high level of resolution.

Dario Bonetta of the University of Ontario Institute of Technology, Debolt, Somerville and Ehrhardt all participated in screening a large number of small molecules to determine which ones interfere with cell wall building. Those that interfered were then examined at the cellular level—using the fluorescent marker—in order to see how they affect the cellulose-synthetic complexes.

Once interesting candidates were identified, a search was undertaken to look for mutant plants that showed reduced responses to these molecules. It was assumed that, because these plants were either unaffected or differently affected by these molecules, then they would have walls that are compromised or in some way unusual.

Using this process of elimination, two mutations, called CESA1 and CESA3, were found in the genes that encode certain cellulose synthase proteins and these mutated genes were further studied. Both of these mutations are predicted to be found in the part of these proteins that cross the plant cell's membrane, which forms just inside the cell wall.

Other members of the team analyzed the cellulose manufactured by plant cells that had these mutations and found defects in the structure of cellulose that these altered proteins produced.

Normally, the individual sugar chains that make up cellulose bond to each other to make a semi-crystalline fiber. This crystalline structure gives cellulose its essential , such as rigidity and tensile strength. This structure is also is responsible for cellulose's resistance to digestion, which provides a key barrier to utilizing cellulose as a source to produce liquid fuel.

The mutant CESAs, 1 and 3, produced cellulose with lower . This cellulose was also more easily digested, a process that is needed to liberate sugars from cellulose so they can be converted to useful fuels.

"The team made a connection between the structure of the proteins that produce cellulose, and the structure of their product," Ehrhardt said. "This is a first step in understanding how this important property of may be regulated, opening possibilities for development of useful biomaterials and for cellulosic biofuel crops."

Explore further: New alfalfa variety resists ravenous local pest

Related Stories

Formation of cellulose fibers tracked for the first time

Apr 20, 2006

Cellulose--a fibrous molecule found in all plants--is the most abundant biological material on Earth. It is also a favored target of renewable, plant-based biofuels research. Despite overwhelming interest, ...

Advance in understanding cellulose synthesis

Jun 14, 2009

Cellulose is a fibrous molecule that makes up plant cell walls, gives plants shape and form and is a target of renewable, plant-based biofuels research. But how it forms, and thus how it can be modified to design energy-rich ...

Cellulose breakdown

Jun 24, 2011

Ionic liquids have emerged as promising new solvents capable of disrupting the cellulose crystalline structure in a wide range of biomass feedstocks.

CSI at the service of cellulose synthesis

Jul 20, 2010

(PhysOrg.com) -- Grains, vegetables and fruit taste delicious and are important sources of energy. However, humans cannot digest the main component of plants - the cellulose in the cell wall. Even in ruminants, ...

Recommended for you

New alfalfa variety resists ravenous local pest

13 hours ago

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

New patenting guidelines are needed for biotechnology

Apr 22, 2014

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and licensing guidelines, according to a new paper from Rice University's Baker Institute for Public Policy.

Rainbow trout genome sequenced

Apr 22, 2014

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

User comments : 0

More news stories

Citizen scientists match research tool when counting sharks

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...