The splice of life: Proteins cooperate to regulate gene splicing

Feb 16, 2012
RNAs wound in a knot and bound by hnRNP proteins illustrates the intractable problem of RNA regulation addressed by Huelga et al. Credit: UC San Diego School of Medicine

Understanding how RNA binding proteins control the genetic splicing code is fundamental to human biology and disease – much like editing film can change a movie scene. Abnormal variations in splicing are often implicated in cancer and genetic neurodegenerative disorders.

In a step toward deciphering the " code" of the human genome, researchers at the University of California, San Diego School of Medicine have comprehensively analyzed six of the more highly expressed RNA binding proteins collectively known as heterogeneous nuclear ribonucleoparticle (hnRNP) proteins.

This study, published online Feb 16 in Cell Press' new open-access journal Cell Reports, describes how multiple RNA binding proteins cooperatively control the diversity of proteins in human cells by regulating the alternative splicing of thousands of genes.

In the splicing process, fragments that do not typically code for protein, called introns, are removed from gene transcripts, and the remaining sequences, called exons, are reconnected. The proteins that bind to RNA are important for the control of the splicing process, and the location where they bind dictates which pieces of the RNA are included or excluded in the final gene transcript -- in much the same fashion that removing and inserting scenes, or splicing, can alter the plot of a movie.

"By integrating vast amounts of information about these key binding proteins, and making this data widely available, we hope to provide a foundation for building predictive models for splicing and future studies in other cell types such as embryonic stem cells," said principal investigator Gene Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine and the Institute for Genomic Medicine at UC San Diego, and a visiting professor at the Molecular Engineering Laboratory in Singapore. "If we can understand how these proteins work together and affect one another to regulate alternative splicing, it may offer important clues for rational drug design."

The data sets highlighted in this study – derived from genome-wide methods including custom-designed splicing-sensitive microarrays, RNA sequencing and high-throughput sequencing to identify genome-wide binding sites (CLIP-seq) -- map the functional binding sites for six of the major hnRNP proteins in human cells.

"We identified thousands of binding sites and altered splicing events for these hnRNP proteins and discovered that, surprisingly these proteins bind and regulate each other and a whole network of other RNA binding proteins, suggesting that these proteins are important for the homeostasis of the cell," said first author, NSF fellow Stephanie C. Huelga.

According to the UCSD researchers, the genes specifically targeted by the RNA in this study are also often implicated in cancer. Yeo added that of the thousands of genomic mutations that appear in cancer, a vast majority occur in the introns that are removed during splicing; however, intronic regions are where regulatory hnRNP proteins often bind.

"Our findings show an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells. The orchestration of is not only important for the homeostasis of the cell, but – by mapping the location of binding sites and all the regulatory places in a gene – this study could reveal how disruption of the process leads to disease and, perhaps, a way to intervene."

Explore further: Team advances genome editing technique

Related Stories

Loss of key protein boosts neuron loss in ALS

Mar 04, 2011

Amyotrophic lateral sclerosis, known as ALS or more popularly, Lou Gehrig's disease, is a notorious neurodegenerative condition characterized by the progressive deterioration of brain and spinal cord neurons, resulting in ...

New mechanism in the regulation of human genes

Jul 14, 2011

Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

New link found between obesity and insulin resistance

Aug 02, 2011

Obesity is the main culprit in the worldwide avalanche of type 2 diabetes. But how excess weight drives insulin resistance, the condition that may lead to the disease, is only partly understood. Scientists at Joslin Diabetes ...

Researchers find mutation causing neurodegeneration

Jan 19, 2012

A Jackson Laboratory research team led by Professor and Howard Hughes Medical Investigator Susan Ackerman, Ph.D., has discovered a defect in the RNA splicing process in neurons that may contribute to neurological disease.

Temperature controls the genetic message

Sep 16, 2011

Alternative splicing, the mechanism enabling a gen to encode different proteins, according to the cell's needs, still holds many secrets. It has transformed the initial theory of one gen, one protein, but how it is controlled ...

Recommended for you

Team advances genome editing technique

18 hours ago

Customized genome editing – the ability to edit desired DNA sequences to add, delete, activate or suppress specific genes – has major potential for application in medicine, biotechnology, food and agriculture.

Studies steadily advance cellulosic ethanol prospects

Oct 20, 2014

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0