Soil bacteria and pathogens share antibiotic resistance genes

Feb 21, 2012 By Michael C. Purdy
Graduate student Kevin Forsberg, shown preparing a bacterial culture, led a comparison of antibiotic resistance genes in soil bacteria and in pathogens. (MICHAEL C. PURDY)

(PhysOrg.com) -- Disease-causing bacteria’s efforts to resist antibiotics may get help from their distant bacterial relatives that live in the soil, new research at Washington University School of Medicine suggests.

The researchers found identical for in and in from clinics around the world. The matches prove that the two groups of bacteria have recently shared these genes but do not establish the direction of the sharing.

The results will be presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science in Vancouver, British Columbia. The presentation is part of a panel discussion titled “Winning: Superbugs or Surveillance and Science?”

“A majority of the antibiotics used today are produced by soil bacteria, so it’s no surprise that the same bacteria have genes for resisting antibiotics,” says presenter Gautam Dantas, PhD, assistant professor of pathology and immunology. “Antibiotic resistance genes have likely been around for billions of years in the soil, but we wanted to take a first look at whether any of them are being exchanged with bacteria that cause human disease.”

Using soil samples from sites in the United States, Dantas and his colleagues identified a series of antibiotic resistance genes in soil bacteria that can resist five classes of antibiotics, including forms of penicillin, sulfonamide and tetracycline. They found seven genes, of which several appear to be clustered together, that collectively employ all the known strategies for resisting antibiotics: blocking or ejecting the antibiotic from infected host cells, directly attacking the antibiotic or modifying the bacterial protein targeted by the antibiotic.

The same antibiotic resistance genes were present, often in similarly clustered arrangements, in samples of disease-causing bacteria from medical clinics around the world. Many of the matched genes were identical not only in the sections of the genes that code for proteins but also in nearby non-coding sections.

Bacterial DNA normally accumulates mutations and other alterations much more quickly than the DNA of humans. The lack of changes in the antibiotic resistance genes identified in the study suggests that the transfers of the genes must have occurred fairly recently in evolutionary history.

“We don’t yet know how much of a challenge these gene transfers are for our efforts to control infectious diseases,” says Kevin Forsberg, a graduate student in Dantas’ lab who led the research. “Are there a whole lot of these antibiotic resistance clusters being passed around, or did we just get lucky in discovering this potent group in our first assessment?”

“I suspect the soil is not a teeming reservoir of antibiotic resistance genes,” Dantas says. “But when we dump antibiotics into the environment, as our society does in a variety of contexts, we may be enriching that reservoir, and that may make antibiotic resistance genes more accessible to infectious bacteria.”

Dantas’ presentation will also feature earlier research he conducted on the presence of antibiotic resistance genes in human gut microbes.

Explore further: Blocking a fork in the road to DNA replication

Related Stories

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Antibiotic resistance spreads rapidly between bacteria

Apr 11, 2011

The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Antibiotics have long-term impacts on gut flora

Nov 01, 2010

Short courses of antibiotics can leave normal gut bacteria harbouring antibiotic resistance genes for up to two years after treatment, say scientists writing in the latest issue of Microbiology, published on 3 November.

Recommended for you

Researchers capture picture of microRNA in action

23 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.