Researchers find social robots require astute tuning to improve acceptability by the human mind

Feb 03, 2012

After years of existing only in fiction, social robots are finally being designed that can more closely emulate how people express themselves, interact and learn – and doing so while performing jobs like teaching social behavior to children with autism or helping stroke patients with their physical rehabilitation exercises.

But what does it take to make a social and engaging? Should it walk and talk just like a person? Should it be emotionally expressive and responsive? Does the personality of the robot matter? What's needed to get a robot and a human to work well together?

According to Professor Maja Matarić, University of Southern California and director of USC's Center for Robotics and Embedded Systems, while there are many challenges ahead, one of the biggest remains getting the robots to match the needs and expectations of the human mind. "How we interact with embodied machines is different than how we interact with a computer, cell phone or other intelligent devices," says "We need to understand those differences so we can leverage what is important."

Matarić has developed social robots for use in a variety of therapeutic roles. According to Matarić, one of the keys for a successfully designed social robot is considering not only how it communications verbally, but physically through facial expressions and body language. Also important: embedding the right personality. "We found that when we matched the personality of the robot to that of the user, people performed their rehab exercises longer and reported enjoying them more."

Another key is matching a robot's appearance to our perception of its abilities. Ayse Saygin is an assistant professor at the University of California San Diego and faculty member of the Kavli Institute of Brain and Mind. Last year, Saygin and her colleagues set out to discover if what they call the "action perception system" in the human brain is tuned more to human appearance or human motion. By using brain scans, they found that as people observed highly humanlike robots compared to less humanlike robots, the brain detected the mismatch and didn't respond as well. "Making robots more humanlike might seem intuitively like that's the way to go, but we find it doesn't work unless the humanlike appearance is equally matched with humanlike actions."

A social robot also needs the ability to learn socially. Andrea Thomaz is an assistant professor at the Georgia Institute of Technology and director of its Social Intelligent Machines Laboratory. At her lab, they have built a robot designed to learn from humans the way a person would -- along with speech, through observation, demonstration and social interaction. "In my lab, we see human social intelligence as being comprised of four key components – the ability to learn from other people, the ability to collaborate with other people, the ability to apply emotional intelligence, and the ability to perceive and respond to another person's intentions. We try to build this social intelligence in our robots."

Explore further: Festo has BionicANTs communicating by the rules for tasks

More information: Read the complete story at: www.kavlifoundation.org/scienc… -recipe-social-robot

Provided by The Kavli Foundation

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Your brain on androids

Jul 14, 2011

Ever get the heebie-jeebies at a wax museum? Feel uneasy with an anthropomorphic robot? What about playing a video game or watching an animated movie, where the human characters are pretty realistic but just ...

Teaching robots to move like humans (w/ Video)

Mar 07, 2011

When people communicate, the way they move has as much to do with what they're saying as the words that come out of their mouths. But what about when robots communicate with people? How can robots use non-verbal ...

Robots to help children to form relationships

May 29, 2007

A project which is using robots to help children with developmental or cognitive impairments to interact more effectively has just started at the University of Hertfordshire.

Robots rule in engineering lab

Sep 28, 2010

"If I did not have a handsome face and two arms ... you would probably not be as inclined to interact with me," Brian the robot tells visitors to Professor Goldie Nejat's autonomous systems and biomechatronics lab.

Recommended for you

Future US Navy: Robotic sub-hunters, deepsea pods

15 hours ago

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Festo has BionicANTs communicating by the rules for tasks

Mar 27, 2015

Germany-based automation company Festo, focused on technologies for tasks, turns to nature for inspiration, trying to take the cues from how nature performs tasks so efficiently. "Whether it's energy efficiency, ...

Virtual robotization for human limbs

Mar 26, 2015

Recent advances in computer gaming technology allow for an increasingly immersive gaming experience. Gesture input devices, for example, synchronise a player's actions with the character on the screen. Entertainment ...

Robots on reins could be the 'eyes' of firefighters

Mar 25, 2015

Researchers at King's College London have developed revolutionary reins that enable robots to act like guide dogs, which could enable that firefighters moving through smoke-filled buildings could save vital ...

Robot revolution will change world of work

Mar 24, 2015

Robots will fundamentally change the shape of the workforce in the next decade but many industries will still need a human touch, a QUT Future of Work Conference has heard.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.