Computer sleuthing helps unravel RNA's role in cellular function

Feb 15, 2012
Dr. Shaojie Zhang's computer science research is helping unravel how RNA works. Credit: UCF

Computer engineers may have just provided the medical community a new way of figuring out exactly how one of the three building blocks of life forms and functions.

University of Central Florida Engineering Assistant Professor Shaojie Zhang used a complex to analyze RNA motifs – the subunits that make up RNA (ribonucleic acid).

RNA is one of three building blocks of life along with DNA and proteins. Knowing how all three work together and how they go awry will go a long way to understanding what causes diseases and how to treat them.

While much has been discovered about DNA thanks to the Human Genome Project, not a lot is known about RNA, which like DNA helps encode genes. Some viruses also use RNA as their prime genetic source to replicate. And various types of RNA are involved in everything from protein synthesis, controlling gene expression and communicating cell signals from one part of the body to another.

The units that make up RNA fold like a long accordion and vary in structure. Many have been identified in the past, but finding a quick automatic way to determine patterns in the varying types of units has been elusive until now.

"We have discovered many new RNA structural motifs using our new computational method," Zhang said. "This breakthrough can largely increase our current knowledge of RNA structural motifs. And newly discovered motifs may also help us develop possible treatment of certain diseases."

Zhang's work is this month's cover story in Nucleic Acids Research, an academic journal.

Using computers, Zhang and his team have been able to view these RNA accordion-like structures and how they fold in a 3-D scale. The program can quickly go through many samples and discover units that are distinct and form patterns. That information gives researchers clues about their function.

"It's another tool to help unravel the mystery of how biology works and why it sometimes goes wrong, resulting in some fatal disease," Zhang said.

Explore further: First detailed microscopy evidence of bacteria at the lower size limit of life

add to favorites email to friend print save as pdf

Related Stories

Researchers publish study on neuronal RNA targeting

Sep 07, 2011

SUNY Downstate scientist Ilham Muslimov, MD, PhD, along with senior author Henri Tiedge, PhD, professor of physiology and pharmacology and of neurology, published a study suggesting that cellular dysregulation associated ...

'Quiet revolution' may herald new RNA therapeutics

Jan 21, 2007

Scientists at the University of Oxford have identified a surprising way of switching off a gene involved in cell division. The mechanism involves a form of RNA, a chemical found in cell nuclei, whose role was previously unknown, ...

Closing a loophole in the RNA World Hypothesis

Jan 15, 2007

New scientific research may close a major loophole in the RNA world hypothesis, the idea that ribonucleic acid -- not the fabled DNA that makes up genes in people and other animals -- was the key to life's emergence on Earth ...

Researchers find key to messenger RNA control

Jul 26, 2007

Researchers at McGill University have successfully used a class of tiny nucleic acids called microRNAs to control messenger RNA, one of the major gene regulators in life, outside the confines of a living cell for the first ...

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

Feb 26, 2015

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

Feb 26, 2015

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

Feb 26, 2015

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.