Size matters -- even for molecules

Feb 03, 2012

(PhysOrg.com) -- Two electrons that are emitted from a large molecule by a single photon may originate from far apart within that molecule. In a recent study on hydrocarbon molecules consisting of one to five fused benzene rings (each ring consisting of six carbon atoms), Synchrotron Radiation Center researchers Tim Hartman and Ralf Wehlitz have found that the relative probability for ejecting two electrons scales linearly with the length of the molecule.

This indicates that the two electrons can originate at the two opposite ends of the molecule, which, in this case, is up to 1.4 nm or about 10 times the diameter of a carbon atom apart. This observation also implies that the production of stable doubly charged parent ions relative to singly charged parent ions is rather large for large molecules leading to the emission of many slow .

When a slow electron attaches to another molecule, such as a large bio-molecule, it makes it prone to , so that such "marked" molecule can easily fragment.

The publication of this paper by SRC Researchers Tim Hartman and Ralf Wehlitz can be found at T. Hartman et al., PRL 108, 023001 (2012).

Explore further: Team invents microscopic sonic screwdriver

Related Stories

How do free electrons originate?

Jan 20, 2010

Scientists at Max Planck Institute of Plasma Physics (IPP) in Garching and Greifswald and Fritz Haber Institute in Berlin, Germany, have discovered a new way in which high-energy radiation in water can release slow electrons. ...

Scientists track electrons in molecules

Jun 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will ...

Scientists make holograms of atoms using electrons

Jan 06, 2011

(PhysOrg.com) -- While holography is often associated with artistic 3D images, it can also be used for many other purposes. In a new study, scientists have created holograms of atoms using laser-driven electron ...

Hot molecule explains cold chemistry

Jan 30, 2012

(PhysOrg.com) -- Surprisingly, hydrogen cyanide and its far more energetic isomer, hydrogen isocyanide, are present in almost equal amounts in cold interstellar gas clouds. Scientists from the Max Planck Institute ...

Recommended for you

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Callippo
1 / 5 (1) Feb 03, 2012
relative probability for ejecting two electrons scales linearly with the length of the molecule.
if true, nanotubes should always eject two electrons only

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.