Size matters -- even for molecules

Feb 03, 2012

(PhysOrg.com) -- Two electrons that are emitted from a large molecule by a single photon may originate from far apart within that molecule. In a recent study on hydrocarbon molecules consisting of one to five fused benzene rings (each ring consisting of six carbon atoms), Synchrotron Radiation Center researchers Tim Hartman and Ralf Wehlitz have found that the relative probability for ejecting two electrons scales linearly with the length of the molecule.

This indicates that the two electrons can originate at the two opposite ends of the molecule, which, in this case, is up to 1.4 nm or about 10 times the diameter of a carbon atom apart. This observation also implies that the production of stable doubly charged parent ions relative to singly charged parent ions is rather large for large molecules leading to the emission of many slow .

When a slow electron attaches to another molecule, such as a large bio-molecule, it makes it prone to , so that such "marked" molecule can easily fragment.

The publication of this paper by SRC Researchers Tim Hartman and Ralf Wehlitz can be found at T. Hartman et al., PRL 108, 023001 (2012).

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

How do free electrons originate?

Jan 20, 2010

Scientists at Max Planck Institute of Plasma Physics (IPP) in Garching and Greifswald and Fritz Haber Institute in Berlin, Germany, have discovered a new way in which high-energy radiation in water can release slow electrons. ...

Scientists track electrons in molecules

Jun 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will ...

Scientists make holograms of atoms using electrons

Jan 06, 2011

(PhysOrg.com) -- While holography is often associated with artistic 3D images, it can also be used for many other purposes. In a new study, scientists have created holograms of atoms using laser-driven electron ...

Hot molecule explains cold chemistry

Jan 30, 2012

(PhysOrg.com) -- Surprisingly, hydrogen cyanide and its far more energetic isomer, hydrogen isocyanide, are present in almost equal amounts in cold interstellar gas clouds. Scientists from the Max Planck Institute ...

Recommended for you

New insights found in black hole collisions

10 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

10 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

14 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Callippo
1 / 5 (1) Feb 03, 2012
relative probability for ejecting two electrons scales linearly with the length of the molecule.
if true, nanotubes should always eject two electrons only

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.