Scientists study how to improve pesticide efficiency

February 29, 2012

In 2007, a controversial pesticide was approved by the Food and Drug Administration for use on fruit and vegetable crops, mainly in California and Florida. Farm workers and scientists protested the approval of the pesticide because its active ingredient, methyl iodide, is a known carcinogen. Now, MU researchers are studying the molecular structure of the pesticide to determine if the product could be made more efficient and safer for those living near, and working in, treated fields.

Methyl iodide is the used in a pesticide known commercially as Midas. Midas is a mix of methyl iodide and chloropicrin, a , and is used primarily on the fields that will grow strawberries, tomatoes and bell peppers. In a new study published this month in the , MU researchers studied why the manufacturer blended the chemicals to determine if a different chemical combination might be possible.

"We found that the two chemicals, methyl iodide and chloropicrin, are mixed to slow the release of methyl iodide and increase its effectiveness," said Rainer Glaser, professor of chemistry in the MU College of Arts & Science. "However, we believe that a different chemical mix could further slow the release of methyl iodide and allow farmers to use less of the pesticide, which would make the area safer for workers and the public."

Methyl iodide is a fumigant, meaning that it fills an air space with gas, suffocating and poisoning the pests within the airspace. Farm workers dressed in protective suits apply Midas in liquid form to fields 10 to 14 days prior to planting and cover future crop rows with plastic sheeting. During that time period, the pesticide is released in gas form, suffocating pests in the top layer of the soil. However, much of the fumigant is useless as it is lost into the atmosphere upon application and during the release period due to ventilation of the area. All of the pesticide is gone before the area is planted.

"Farmers use 200 to 300 pounds of Midas per acre and nearly 80 percent of the pesticide is not effective in killing pests," said Kaitlan Prugger, a co-author and undergraduate researcher. "Gas lost to the atmosphere could pose risks to farm workers and nearby communities. Even a small improvement in effectiveness achieved through a change in the chemical blend could greatly reduce the amount of pesticide used per acre."

The use of methyl iodide is a consequence of the Montreal Protocol on Substances that Deplete the Ozone Layer. Prior to the protocol, farmers used methyl bromide to fumigate strawberry and tomato fields. However, methyl bromide was found to deplete the ozone and its use was phased out completely in 2005.

Explore further: Alternatives to ozone-depleting pesticide studied

Related Stories

Alternatives to ozone-depleting pesticide studied

May 7, 2008

Methyl bromide, an odorless, colorless gas used as an agricultural pesticide, was introduced in the 1980s as an effective way to control weeds and increase fruit yields. Agricultural production nurseries around the world ...

Alternatives eyed for methyl bromide

March 16, 2011

U.S. Department of Agriculture (USDA) scientists trying to help Florida growers find a replacement for methyl bromide are studying an alternative soil treatment that uses molasses as one of its ingredients.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.