Scientists demonstrate the performance of a new nanoprinting technique

Feb 28, 2012

Scientists at the IBM Research – Zurich Laboratory in collaboration with the ETH Zurich have succeeded in positioning so-called nanotubes — measuring only 25 by 80 nanometers — on a surface in a highly precise and systematic manner using a special nanoscale orientation and printing process. To prove that their method works, the scientists constructed a standing and a walking Ampelmännchen (pedestrian pictogram on traffic lights) of selectively oriented gold nanotubes. An interesting application of this method could be as counterfeit-proofing of valuable items such as watches, jewellery or works of art.

The scientific journal Advanced Functional Materials featured an article describing this work in its 22 February 2012 issue. Researchers have developed a nanoscale orientation and printing process that allows them to print any arbitrary pattern with a resolution of individial particles. The publication describes how this method even allows oblong nanotubes to be oriented specifically in the same direction — lengthwise or crosswise — while preserving the often unique properties of the nanotubes.

Dr. Heiko Wolf, head of the project team at IBM Research – Zurich explains, "We use the surface tension of water and a nanostructure template to orient the nanotubes. They can then be transferred to any given surface via a nanoprinting process."

Such nanotubes, which are smaller than 100 nanometers, often have unique properties. The nonspherical particles are of interest because certain properties can be exploited depending on their orientation. For example, the optical properties of the gold nanotubes used in these experiments can be targeted. Observed through a polarization filter, the color of the light changes depending on the orientation of the tubes relative to the filter. In this manner, scientists succeeded in creating a standing red Ampelmännchen and a walking green one of the same kind of nanotubes, but oriented in different directions. Measuring only 60 micrometers, the Ampelmännchen® are roughly 2500 times smaller than the originals.

Suitable processes to apply a large number of nanostructures or functional particles to surfaces in an efficient and precise manner are essential for the practical application of many nanotechnology innovations. This sophisticated printing technique constitutes a versatile and powerful fabrication method that could lend itself to such commercial appliations as counterfeit-proofing or in the electronics and IT sectors or for energy technology.

Explore further: Study shows graphene able to withstand a speeding bullet

add to favorites email to friend print save as pdf

Related Stories

Nanotechnology for water filter

Jul 21, 2011

Nanotechnology has developed tremendously in the past decade and was able to create many new materials with a vast range of potential applications. Carbon nanotubes are an example of these new materials and consist of cylindrical ...

Carbon nanotubes twice as strong as once thought

Sep 15, 2010

Carbon nanotubes -- those tiny particles poised to revolutionize electronics, medicine, and other areas — are much bigger in the strength department than anyone ever thought, scientists are reporting.

High Value Semiconducting Carbon Nanotubes

Jul 12, 2004

A simple technique has been developed for producing high value semiconducting carbon nanotubes from samples of single and multi walled carbon nanotubes. The Oxford Invention is a technique for purifying samp ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

17 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.