Scientists help define structure of exoplanets

Feb 01, 2012

Using models similar to those used in weapons research, scientists may soon know more about exoplanets, those objects beyond the realm of our solar system.

In a new study, Lawrence Livermore National Laboratory scientists and collaborators came up with new methods for deriving and testing the equation of state (EOS) of matter in and figured out the mass-radius and mass-pressure relations for materials relevant to planetary interiors.

Astronomers started detecting exoplanets 18 years ago and more than 700 have been found so far, the vast majority within the last two years. Interest is now growing in the structure and atmospheres of these worlds.

New equation-of-state work helps interpret the structure of exoplanets. As there is a minimal amount of data in each exoplanet observation, interpretation of their composition and structure depends largely on comparing their mass and radius with the composition expected given the distance from their . The makeup implies a mass-radius relation, which relies heavily on EOS calculated from electronic structure theory and measured experimentally on Earth.

In the new research, lead Laboratory scientist Damian Swift, along with LLNL colleagues Jon Eggert, Damien Hicks, Sebastien Hamel, Kyle Caspersen, Eric Schwegler and Rip Collins, compared their modeling results with the observed masses and radii of exoplanets. Their results broadly support recent assumptions about the structures of exoplanets but can now take advantage of the accurate EOS models and data produced at Livermore.

"Current theoretical techniques for calculating electronic structures can predict EOS relevant to ," Swift said. "But we still need experimental validation of these calculations; something that can now be done at the National Ignition Facility (NIF)."

LLNL's National Ignition Facility is the world's largest laser designed to perform research on national security, fusion experimentation and basic science, such as astrophysics.

The team made specific predictions for notable exoplanets having earth-like, rocky, icy compositions, with planetary center pressures ranging from 8 to 19,000 Mbar (8 million to 1.9 billion atmospheres of pressure).

"We have a project to measure material properties up to billions of atmospheres on NIF. We will eventually exceed the highest pressures investigated in the very small number of previous experiments using underground nuclear tests, which reached far above pressures that can be explored with other techniques currently available," Swift said.

Placing constraints on the structure of exoplanets requires accurate information about the compressibility of relevant compositions of matter, including iron alloys, silicates, and ices, under extreme conditions of pressure and temperature.

"This sets the record straight and presents a survey of exoplanet information using material properties generated for, and validated using, experimental capabilities at the national labs," Swift said.

Explore further: Quest for extraterrestrial life not over, experts say

More information: The research recently appeared in The Astrophysical Journal (APJ, 744:59, 2012).

Related Stories

Under pressure: Ramp-compression smashes record

Nov 11, 2011

In the first university-based planetary science experiment at the National Ignition Facility (NIF), researchers have gradually compressed a diamond sample to a record pressure of 50 megabars (50 million times ...

COROT's exoplanet hunt update

May 22, 2008

Two new exoplanets and an unknown celestial object are the latest findings of the COROT mission. These discoveries mean that the mission has now found a total of four new exoplanets.

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.