RF transmitter and receiver modules for wheelchair

Feb 07, 2012

Inventions can help physically-challenged people lead life with fewer difficulties. Mohd Thamrin, Rosman R. and Sarmawi D. S. of UiTM Shah Alam Malaysia studied the use of inexpensive RF transmitters and receiver modules for wireless transmission to improve the functionality and efficiency of the manual controlled wheelchair.

Not all of us are bestowed with a pair of well-functioning . Nonetheless, those who are physically challenged have benefited so much from the days wheelchairs were invented. Today, with the increasingly sophisticated technology, wheelchair-bound people can move more easily in robotic wheelchairs. One example of robotic wheelchairs is the advanced electric-powered wheelchairs (EPW). Unfortunately, the current state of EPW control technology does not provide adequate mobility and comfort for users.

This drawback can be improved by a User’s Controller Panel (UCP) to enhance its movement. The UCP, applied to the wheelchair control mode, is the most suitable for users with lower part disability since the execution of the tasks requires hand and fingers movement. By implementing , several advantages and flexibility can be introduced to the control mode.

Since human-machine interface is an essential element in robotic wheelchair control mode, M. Thamrin N., Rosman R., and Sarmawi D. S. of UiTM Shah Alam Malaysia studied the and of the manual control mode. In particular they examined the application of inexpensive RF transmitters and receiver modules for wireless transmission.

A UCP and a model of robotic wheelchair were designed for the test. This robotic wheelchair made use of a geared DC motor mounted on each of the wheel. The basic locomotion: forward, reverse, left and right turning, was controlled by users via UCP. It implements wireless technology which allows the controller panel to be mounted on the armrest of the wheelchair or can be held by users or even can be controlled from a distance by a third party. The wireless controller panel of the robotic wheelchairs uses RF modules for data transmissions.

The findings of this study have shown that UCP is plausible to provide a better manual control mode for robotic wheelchair locomotion. The implementation of on the controller panel extended the manual control mode, which was conventionally mounted on the wheelchair.

Unfortunately, good things do not come cheap. Inexpensive RF transmitters and receivers are only able to handle some basic wireless communications such as sending basic instructions to the microcontroller unit (MCU) of the robotic wheelchair. RF module does have some limitations which is it can only provide one way data transfer. Extra data can only be sent by transmitter to the receiver but not the other way around. This factor limits the UCP to be used in a remote monitoring system.

In short, the results prove that cheaper RF modules are feasibility for simple-one way wireless data transfer to transmit several basic instructions to the robotic wheelchair.

The researchers recommended more sophisticated wireless communication such as wireless sensor network (WSN) and Wireless Internet Camera Server (WICS). Such wireless communication could be implemented as the wireless monitoring system for robotic wheelchair since it transmits real-time high quality video over the Internet. This will ensure safe and accurate robotic locomotion control especially within a confined area such as public hall or shopping mall.

Explore further: PsiKick's batteryless sensors poised for coming 'Internet of things'

Provided by Universiti Teknologi MARA (UiTM)

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Wheelchair transformer draws viewers at Tokyo show

Dec 14, 2011

(PhysOrg.com) -- A novel attachment that is designed for an ordinary wheelchair can turn the chair into a “power-coaster” with electric drive. The transformed manual wheelchair into an electric wheelchair ...

Wheelchair follows orders, but can act on its own, too

May 25, 2011

Five Northeastern University engineering seniors have developed an innovative, voice-operated wheelchair that can navigate through a cluttered room, move alongside walls and detect stairwells and other obstacles ...

Rowheel wheelchair is pulled to move forward

Oct 08, 2010

(PhysOrg.com) -- Wheelchairs have a basic problem because the occupant must push the wheels forward to turn the chair’s wheels, but this action is physically stressful on the anterior deltoid muscles ...

Teaching robot helps children to use wheelchair

Aug 12, 2010

A robotic wheelchair is being developed that will help children learn to 'drive'. Researchers writing in BioMed Central's open access Journal of NeuroEngineering and Rehabilitation describe the testing of ROLY -RObot-assisted Learni ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...