Remnant of an explosion with a powerful kick?

Feb 02, 2012 By Janet Anderson and Megan Watzke
Credits: X-ray: NASA/CXC/SAO/I. Lovchinsky et al; IR: NASA/JPL-Caltech

(PhysOrg.com) -- Vital clues about the devastating ends to the lives of massive stars can be found by studying the aftermath of their explosions. In its more than twelve years of science operations, NASA's Chandra X-ray Observatory has studied many of these supernova remnants sprinkled across the Galaxy.

The latest example of this important investigation is Chandra's new image of the supernova remnant known as G350.1+0.3. This stellar debris field is located some 14,700 light years from the Earth toward the center of the Milky Way.

Evidence from Chandra and from ESA's XMM-Newton telescope suggest that a compact object within G350.1+0.3 may be the dense core of the star that exploded. The position of this likely neutron star, seen by the arrow pointing to "neutron star" in the inset image, is well away from the center of the X-ray emission. If the occurred near the center of the X-ray emission then the neutron star must have received a powerful kick in the supernova .

Data from Chandra and other telescopes suggest this supernova remnant, as it appears in the image, is between 600 and 1,200 years old. If the estimated location of the explosion is correct, this means that the neutron star has been moving at a speed of at least 3 million miles per hour since the explosion This is comparable to the exceptionally high speed derived for the neutron star in Puppis A, another neutron star moving at a blistering pace within a supernova remnant. The G350+1+0.3 data provide new evidence that extremely powerful "kicks" may be imparted to left behind once the supernova has exploded.

Another intriguing aspect of G350.1+0.3 is its unusual shape. While many remnants are nearly circular, G350.1+0.3 is strikingly asymmetrical as seen in the Chandra data in this image (gold). Infrared data from NASA's (light blue) also trace the morphology found by Chandra. Astronomers think that this bizarre shape is due to stellar debris field expanding into a nearby cloud of cold molecular gas.

The age of 600-1200 years puts the explosion that created G350.1+0.3 in the same time frame as other famous supernovas that formed the Crab and SN 1006 . However, it is unlikely that anyone on Earth would have seen the explosion because of the obscuring gas and dust that lies along our line of sight to the remnant.

These results appeared in the April 10, 2011 issue of The Astrophysical Journal. The scientists on this paper were Igor Lovchinsky and Patrick Slane (Harvard-Smithsonian Center for Astrophysics), Bryan Gaensler (University of Sydney, Australia), Jack Hughes (Rutgers University), Jasmina Lazendic (Monash University Clayton, Australia), Joseph Gelfand (New York University, Abu Dhabi), and Crystal Brogan (National Radio Astronomy Observatory).

Explore further: Planet-forming lifeline discovered in a binary star system

Related Stories

Detective astronomers unearth hidden celestial gem

Jun 10, 2008

ESA’s orbiting X-ray observatory XMM-Newton has re-discovered an ignored celestial gem. The object in question is one of the youngest and brightest supernova remnants in the Milky Way, the corpse of a star ...

The case of the neutron star with a wayward wake

Jun 01, 2006

A long observation with NASA's Chandra X-ray Observatory revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location ...

Stellar Shrapnel Seen in Aftermath of Explosion

May 24, 2010

(PhysOrg.com) -- This beautiful composite image shows N49, the aftermath of a supernova explosion in the Large Magellanic Cloud. A new long observation from NASA's Chandra X-ray Observatory, shown in blue, ...

Star explosion leaves behind a rose

Dec 12, 2011

(PhysOrg.com) -- About 3,700 years ago, people on Earth would have seen a brand-new bright star in the sky. It slowly dimmed out of sight and was eventually forgotten, until modern astronomers later found ...

Space image: New supernova remnant lights up

Sep 13, 2011

(PhysOrg.com) -- Using the Hubble Space Telescope, astronomers are witnessing the unprecedented transition of a supernova to a supernova remnant, where light from an exploding star in a neighboring galaxy, ...

Supernova remnant is an unusual suspect

Jun 09, 2009

A new image from NASA's Chandra X-ray Observatory shows a supernova remnant with a different look. This object, known as SNR 0104-72.3 (SNR 0104 for short), is in the Small Magellanic Cloud, a small neighboring ...

Recommended for you

When did galaxies settle down?

15 minutes ago

Astronomers have long sought to understand exactly how the universe evolved from its earliest history to the cosmos we see around us in the present day. In particular, the way that galaxies form and develop ...

Image: Hubble views the whirling disk of NGC 4526

1 hour ago

This neat little galaxy is known as NGC 4526. Its dark lanes of dust and bright diffuse glow make the galaxy appear to hang like a halo in the emptiness of space in this image from the NASA/ESA Hubble Space ...

Planet-forming lifeline discovered in a binary star system

20 hours ago

Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) have detected a streamer of dust and gas flowing from a massive outer disk toward the inner reaches of a binary star system. This never-before-seen ...

Astronomy & Astrophysics: Planck 2013 results

Oct 29, 2014

Astronomy & Astrophysics is publishing a special feature of 31 articles describing the data gathered by Planck over 15 months of observations and released by ESA and the Planck Collaboration in March 2013. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

TimESimmons
1 / 5 (3) Feb 02, 2012
Pulsar kicks explained here:-
http://www.presto...ndex.htm

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.