Red mud's carbon capture clue

Feb 29, 2012 By Pete Wilton
The impact of the spill at Ajka, Hungary. Credit: Will Mayes.

(PhysOrg.com) -- An environmental disaster that occurred in Hungary in 2010 could lead to a new way of removing carbon dioxide emissions from the atmosphere.

In October 2010 around 1 million cubic metres of highly caustic ‘red mud’ sludge was released from a waste containment facility near the Hungarian town of Ajka when a retaining wall failed.

The red mud, a by-product of aluminium production, contained substantial quantities of the strong base sodium hydroxide (lye) and resulted in dangerously high pH solutions. It also contained a cocktail of potentially toxic metals such as arsenic, chromium, and vanadium.

10 people died as a result of the incident and over 100 were injured. 4000 hectares of land were affected, with Greenpeace describing it as one of the top three environmental in Europe in the last 20-30 years.

As part of initial cleanup efforts contaminated water was dosed with acid and gypsum was added to the streams and soils of the surrounding area.

Now Phil Renforth, of Oxford University’s Department of Earth Sciences and the Oxford Martin School - and colleagues from the Universities of Hull, Leeds, Newcastle and Budapest University of Technology and Economics - have shown, through geochemical analysis of deposited sediments left by the , that the remediation techniques resulted in being absorbed from the .

The team recently reported their results in Science of the Total Environment.

"It was not intentional or expected that the addition of gypsum, a naturally occurring mineral typically used in plasterboard, would sequester atmospheric carbon dioxide," Phil tells me. ‘This could have substantial implications for industries that produce high pH waste materials, like paper manufacturing.’

Atmospheric carbon dioxide (CO2) is the principle cause of global climate change, and research across the globe is underway to reduce CO2 emissions. Work at the University of Oxford, through the Geoengineering Programme at the Oxford Martin School, is investigating methods that actively remove CO2 from the air.

"We know that high pH solutions absorb carbon dioxide from the atmosphere where it is held in solution as carbonate and bicarbonate ions," Phil explains. "The addition of gypsum supplied calcium to the solution and resulted in the formation of calcium carbonate minerals and the sequestration of carbon dioxide."

The findings could result in new methods for capturing carbon out of thin air.

Explore further: Nile River monitoring influences northeast Africa's future

Related Stories

US rivers and streams saturated with carbon

Oct 17, 2011

Rivers and streams in the United States are releasing enough carbon into the atmosphere to fuel 3.4 million car trips to the moon, according to Yale researchers in Nature Geoscience. Their findings could ...

Can Hungary's red sludge be made less toxic with carbon?

Oct 13, 2010

The red, metal-laden sludge that escaped a containment pond in Hungary last week could be made less toxic with the help of carbon sequestration, says an Indiana University Bloomington geologist who has a patent ...

Recommended for you

Rio's Olympic golf course in legal bunker

12 hours ago

The return of golf to the Olympics after what will be 112 years by the time Rio hosts South America's first Games in 2016 comes amid accusations environmental laws were got round to build the facility in ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Feldagast
4.5 / 5 (2) Feb 29, 2012
If the want more global co2 absorbed from atmosphere they should stop chopping down all the rain forests.