Researchers publish a detailed review of electrical contacts in one and two dimensional nanomaterials

Feb 16, 2012

(PhysOrg.com) -- Researchers from the NIST Center for Nanoscale Science and Technology and Sandia National Laboratories have published a detailed review of recent experimental and theoretical work highlighting the unusual physics and material science of electrical contacts to nanostructures.

In the Nature Nanotechnology article, the researchers explain that existing models of electrical contacts in bulk are inapplicable at the nanoscale, and argue that in order for to progress to practical use, it is critical to control charge at the electrical contacts.

New models are required to understand contact formation and charge transport. In conventional contacts, the interface between a metal and a semiconductor is planar, but nanocontacts have multiple possible geometries, each with unique properties. The kinetics and thermodynamics of metal/nanostructure interfaces also differ from those of the bulk due to their small lateral dimensions and to the greater ability of nanostructures to accommodate strain. Three examples illustrate the range of contacts that are possible with different nanomaterials.

First, abrupt epitaxial silicide/silicon nanowire junctions with novel orientations can be formed at temperatures well below those required for thin metal films, providing new opportunities for emerging devices such as metal source-drain MOSFETs and SpinFETs.

Second, for metal contacts to carbon nanotubes, catalytically driven carbonization of the interface results in an electrically transparent graphene-CNT contact.

Finally, making low resistance ohmic contacts to semiconductor has proven challenging and requires new understanding of doping at the nanometer scale.

The researchers conclude that better understanding of the basic science of nanoscale contacts is necessary to allow to be incorporated into useful new device designs.

Explore further: New nanogenerator harvests power from rolling tires

More information: Electrical contacts to one- and two-dimensional nanomaterials, F. Leonard and A. A. Talin, Nature Nanotechnology 6, 773-783 (2011). www.nature.com/nnano/journal/v6/n12/full/nnano.2011.196.html

Related Stories

Self-cooling observed in graphene electronics

Apr 03, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Nanotubes find niche in electric switches

Mar 10, 2009

New research from Rice University and the University of Oulu in Oulu, Finland, finds that carbon nanotubes could significantly improve the performance of electrical commutators that are common in electric ...

Recommended for you

Nanowires could be the LEDs of the future

Jun 24, 2015

The latest research from the Niels Bohr Institute shows that LEDs made from nanowires will use less energy and provide better light. The researchers studied nanowires using X-ray microscopy and with this ...

Researchers detect spin precession in silicon nanowires

Jun 24, 2015

Scientists at the U.S. Naval Research Laboratory (NRL) have reported the first observation of spin precession of spin currents flowing in a silicon nanowire (NW) transport channel, and determined spin lifetimes ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.