Understanding properties of polyelectrolytes gives control over responsive polymer microstructures

Feb 02, 2012 By Lee Swee Heng
Scanning electron microscope images of (PDADMAC-PSS)10 films assembled on PMMA templates with ’microwells’ of 25 (left) and 7 (right) micrometers. Thinner films form inside larger microwells, and vice-versa. All scale bars: 10 μm.

Polymer films that undergo nanoscale structural transformations in response to external stimuli are key components of devices like biosensors and artificial membranes. One of the best materials for manufacturing such responsive materials is polyelectrolyte multilayers (PEMs) — polymer chains bearing charged units that can assemble layer-by-layer onto solid surfaces. Maxim Kiryukhin at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now gained new insights into PEM growth which may enable construction of three-dimensional microstructures for on-demand drug delivery.

The standard method of producing PEMs involves repeatedly dipping a flat substrate into positively and negatively charged polyelectrolyte solutions. Although this approach can generate large-scale coatings with precise vertical thicknesses, it is far more challenging to achieve similar control at confined dimensions. Previous studies have shown that PEMs grown onto micro-sized surface templates have non-uniform thicknesses that could severely compromise device performance.

Kiryukhin and co-workers systematically investigated a PEM assembled from poly(diallyldimethylammonium chloride)/poly(sodium 4-styrenesulfonate), or PDADMAC–PSS, to help resolve this problem. Unlike other multilayers, the PDADMAC–PSS system can shift from a linear layer-by-layer growth mode to one with exponentially increasing film thickness, simply by increasing the ionic strength of the polyelectrolyte dipping solution. By exploring these two regimes on templates containing differently sized ‘microwells’, the team hoped to discover the critical factors needed to produce consistent microstructures.

First, the researchers imprinted an array of microwells ranging from 2 to 25 micrometers onto a sacrificial plastic template made of poly(methyl methacrylate), or PMMA, and then coated the surface with a PDADMAC–PSS multilayer film. After transferring the PEM onto a silicon support, they dissolved away the PMMA template. Depending on the microwell pattern, the polyelectrolyte concentration, and number of multilayers, this technique generated numerous structures including hollow microchambers and solid microstubs (see image).

The team found that in exponential growth modes, aggregation of PDADMAC chains produced variable template coatings; thicker films could form inside the microwells and vice-versa, depending on the particular template shape. Weak bonds between the PDADMAC aggregates gave these films gel-like mechanical properties. In linear growth modes, the solvated exists as isolated chains that coat the template evenly and make the microstructures rigid and glass-like. Stable hollow microchambers formed in this mode when the PEM film was thicker than 400 nanometers.

According to Kiryukhin, the highly ordered arrays of sealed microchambers produced with this method could allow programmed release of tiny ‘cargos’ from individual cavities — opportunities that the team are currently pursuing.

Explore further: Experiment shows potential of X-ray laser to study complex, poorly understood materials

More information: Research article in Langmuir

Provided by Agency for Science, Technology and Research (A*STAR)

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Nanomaterials: Pillars of the assembly

Sep 29, 2011

The ever-increasing demand for enhanced performance in electronic devices such as solar cells, sensors and batteries is matched by a need to find ways to make smaller electrical components. Several techniques ...

Neutrons answer shampoo formulation puzzle

Dec 12, 2011

(PhysOrg.com) -- Scientists at the Institut Laue-Langevin have used neutrons to solve a long-standing mystery about the surface properties of polyelectrolyte/surfactant mixtures, such as those used in many ...

MIT crafts bacteria-resistant films

May 15, 2008

Having found that whether bacteria stick to surfaces depends partly on how stiff those surfaces are, MIT engineers have created ultrathin films made of polymers that could be applied to medical devices and other surfaces ...

Coming Soon: Blood Vessels from a Test Tube?

Jun 04, 2007

Our tissues and organs consist of a complex, closely balanced assembly of different types of cells, extracellular matrix, and special signal-carrying molecules. The growth of such structures in the laboratory, perhaps for ...

Recommended for you

Chemical biologists find new halogenation enzyme

4 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

10 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

10 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

12 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Science to the rescue of art

Sep 14, 2014

Vincent van Gogh's "Sunflowers" are losing their yellow cheer and the unsettling apricot horizon in Edvard Munch's "The Scream" is turning a dull ivory.

User comments : 0