Precision time: A matter of atoms, clocks, and statistics

Feb 01, 2012

Time is of the essence, especially in communications, navigation, and electric power distribution, which all demand nanosecond precision or better. Keeping these beating hearts of technology in near-perfect global synchronization requires the blending of statistics, atomic science, and technological innovations.

The ability to accurately measure a second in time is at the heart of many essential technologies; the most recognizable may be the (GPS). In a paper accepted for publication in the AIP's journal , a researcher at the National Institutes of Standards and Technology (NIST) and the University of Colorado at Boulder discusses how achieving a stable and coordinated global measure of time requires more than just the world's most accurate timepieces; it also requires approximately 400 atomic clocks working as an ensemble. According to the researcher, however, calculating the average time of an ensemble of clocks is difficult, and complicated statistics are needed to achieve greater accuracy and precision. These statistical calculations are essential to help counter one of the most important challenges in keeping and agreeing on time: distributing data without degrading the performance of the source clocks.

All atomic clocks operate in basically the same way, by comparing an electrical (a device engineered to keep time) with the transition frequency of an atom (one of nature's intrinsic time keepers). This atomic transition is a "flip" in the spin in the outermost electron of an atom – an event that is predictable with an accuracy of a few parts per ten quadrillion. Comparing the natural and engineered signals produces the incredibly stable "tick" of an atomic clock. Several algorithms are then used to estimate the time of the reference clock with respect to the ensemble of clocks. These calculations weed out as much error as possible and establish a reliable reference time. The researcher notes that there are strengths and weaknesses in each of these statistical steps, but these weaknesses can be mitigated to some extent by also including retrospective data. So in essence, determining the current time relies on understanding how accurately researchers were able to calculate time in the past. Even the next generation of and frequency standards are unlikely to eliminate the need for these timescale algorithms. However, keeping and frequency signals and standards the same in all countries is essential and greatly simplifies international cooperation in areas such as navigation, telecommunication, and electric power distribution.

Explore further: What is Nothing?

More information: "The Statistical Modeling of Atomic Clocks and the Design of Time Scales" is accepted for publication in the journal Review of Scientific Instruments.

add to favorites email to friend print save as pdf

Related Stories

New method developed for synchronizing clocks

Jul 20, 2010

Maintaining the correct time is no longer just a matter of keeping your watch wound -- especially when it comes to computers, telecommunications, and other complex systems. The clocks in these devices must stay accurate to ...

Portable Precision: A New Type of Atomic Clock

Dec 10, 2008

(PhysOrg.com) -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement ...

Atomic clock signals may be best shared by fiber-optics

Mar 02, 2007

Time and frequency information can be transferred between laboratories or to other users in several ways, often using the Global Positioning System (GPS). But today's best atomic clocks are so accurate—neither gaining nor ...

Portable Precision: A New Type of Atomic Clock

Jun 11, 2009

The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement of cesium atoms. ...

Recommended for you

What is Nothing?

Aug 22, 2014

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

Aug 22, 2014

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0