Physics team calculates that graphene disks could be complete optical absorbers

February 1, 2012 by Bob Yirka report

(PhysOrg.com) -- In optical devices designed and used to collect light, there has always been a loss of light due to reflection, now, new research by a team of physicists from Spain and England has found, via calculation, that if charged graphene disks of just the right size were made and placed the right distance from one another, they should be able to achieve 100% light absorption. On the team were Sukosin Thongrattanasiri and Javier García de Abajo from Spain and Frank Koppens from the UK. Together they have published a paper in Physical Review Letters describing their research.

Taken alone, graphene (a layer of carbon just one atom thick) isn’t much good at absorbing light, with just a 2.3% absorption rate. But if it were made into very tiny dots or nanodisks the team suggests, plasmons could be exploited to increase the absorption rate. Plasmons are oscillations of electrons at the quantum level and interact with light because of the electrical field they generate. To cause these oscillations to occur in graphene, a small electrical charge could be applied and changing the amount of charge would change the amount of oscillation, which would mean the amount of light interaction could be modified by adjusting the amount of charge as well. Because of this, a mathematical formula can be used to describe just the right amount of charge needed to cause the oscillations to interact with all of the available light. As it turns out, the amount of charge needed to make that happen is the amount necessary to cause the frequency of the oscillations to match the frequency of the light. But, in order to create just the right electrical field, the graphene must be manipulated in such a way as to allow for fine control of the , and that’s where shaping them into disks comes in. Making them just the right size should in theory, allow researchers to create the optimum electrical field that would allow for 100% light absorption. Important also is the placement of the nanodisks in relation to one another. Too close and they will interfere with one another while too much distance would result in less than perfect due to an uneven .

The next step in this research effort will, of course, entail the creation of an actual physical material with nanodisks in it, to ensure the real world product matches the theory. If all works out as planned, new superefficient , such as spectrometers, could result.

More information: Complete Optical Absorption in Periodically Patterned Graphene, Phys. Rev. Lett. 108, 047401 (2012) DOI:10.1103/PhysRevLett.108.047401

Abstract
We demonstrate that 100% light absorption can take place in a single patterned sheet of doped graphene. General analysis shows that a planar array of small particles with losses exhibits full absorption under critical-coupling conditions provided the cross section of each individual particle is comparable to the area of the lattice unit cell. Specifically, arrays of doped graphene nanodisks display full absorption when supported on a substrate under total internal reflection and also when lying on a dielectric layer coating a metal. Our results are relevant for infrared light detectors and sources, which can be made tunable via electrostatic doping of graphene.

Related Stories

Tunable graphene device demonstrated: First tool in kit for putting terahertz light to work

September 4, 2011

Long-wavelength terahertz light is invisible – it's at the farthest end of the far infrared – but it's useful for everything from detecting explosives at the airport to designing drugs to diagnosing skin cancer. ...

British team builds model showing metamaterials could be used to create gecko toe like adhesion

January 27, 2012

(PhysOrg.com) -- Scientists have long been enamored by the gecko’s gravity defying ability to cling to walls and to let go at will, allowing it to walk around sideways, as have Spiderman enthusiasts. Thus far, unfortunately, ...

Shining light on graphene sensors

January 10, 2011

National Physical Laboratory, together with an international team of scientists, have published research showing how light can be used to control graphene's electrical properties. This advance is an important step towards ...

New material promises faster electronics

June 28, 2011

The novel material graphene makes faster electronics possible. Scientists at the Faculty of Electrical Engineering and Information Technology at the Vienna University of Technology (TU Vienna) developed light-detectors made ...

Researchers demonstrate an electrochromic nanoplasmonic optical switch

September 1, 2011

In a recent article in Nano Letters, CNST researchers describe a new high-contrast, low operating-voltage, electrochemical optical switch that uses a volume of active dye orders-of-magnitude smaller than that of conventional ...

How long do electrons live in graphene?

December 12, 2011

Together with international colleagues, scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have added another important component towards understanding the material graphene; a material that is currently receiving ...

Recommended for you

Microscopic 'nanobottles' offer blueprint for enhanced biological imaging

October 27, 2016

A pan-European team of researchers involving the University of Oxford has developed a new technique to provide cellular 'blueprints' that could help scientists interpret the results of X-ray fluorescence (XRF) mapping.

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

Scientists say boron nitride-graphene hybrid may be right for next-gen green cars

October 24, 2016

Layers of graphene separated by nanotube pillars of boron nitride may be a suitable material to store hydrogen fuel in cars, according to Rice University scientists.

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...

Researchers introduce relaxons to help describe heat flow through some crystals

October 21, 2016

A team of researchers with École Polytechnique Fédérale de Lausanne in Switzerland has introduced a new vibrational mode called a relaxon to the field of heat conduction theory to describe the way heat flows through some ...