Physicists finds new path toward increasing semiconductor functionality

Feb 24, 2012 By Marissa Gebhard

(PhysOrg.com) -- The past decade has seen the emergence of the field of spintronics, aimed at increasing the efficiency of information processing and computer memories. The idea behind spintronics is to harness the magnetic property of the electron, referred to as its spin. This property can then be used, in addition to the electron charge, for increasing the functionality of the semiconductor computer chip, in terms of its capacity to store and process information.

Margaret Dobrowolska, professor of physics at the University of Notre Dame, has led a team of collaborators from Notre Dame, the University of British Columbia and Lawrence Berkeley National Laboratory in an effort that has succeeded in identifying the mechanisms responsible for ferromagnetism in the semiconductor (Ga,Mn)As. This new understanding provides a handle for planning new strategies aimed at increasing the alloy’s critical temperature, with an eye of making it ferromagnetic at and above room temperature, and thus opening the way toward realistic spintronic devices.

(Ga,Mn)As is an ideal candidate for spintronic applications. The bottleneck, however, is that it loses its magnetic properties at room temperature. The highest critical temperature at which , and thus the desirable spin properties of (Ga,Mn)As, has so far been achieved is about 200 kelvins (about -99 degrees F). The reason for this obstacle is that the properties of the alloy have so far not been fully understood, preventing realistic strategies for fabrication of this material with higher critical temperatures.

This achievement is featured in the current issue of Nature Materials in an article, “Controlling Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band” by M. Dobrowolska, K. Tivakornasithorn, Y.-Y. Zhou, X. Liu and J.K Furdyna (Notre Dame); M. Berciu, University of British Columbia; and K.M. Yu and W. Walukiewicz, Berkeley Lawrence National Laboratory.

Dobrowolska will present these results at an invited talk at the meeting of the American Physical Society on Feb. 27 (Monday) in Boston.

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

add to favorites email to friend print save as pdf

Related Stories

Mediating magnetism

May 04, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

Synchrotron upgrade to make X-rays even brighter

1 hour ago

(Phys.org) —The X-rays produced by the Cornell High Energy Synchrotron Source (CHESS) are bright, but they will soon be even brighter, thanks to a major upgrade that will make the quality of CHESS' X-rays ...

Cold Atom Laboratory creates atomic dance

17 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Wild molecular interactions in a new hydrogen mixture

22 hours ago

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Scientists create possible precursor to life

Oct 20, 2014

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 0