Outstanding in the cold

Feb 20, 2012 By Brian Murphy
Physicist John P. Davis stands in the site of what will be Canada's coldest laboratory.

Physicist John P. Davis is counting the days until he takes delivery of equipment that will give the University of Alberta the distinction of having the coldest laboratory in Canada.  

Davis’s U of A research focuses on low-temperature physics and the refrigeration unit he’s expecting in March can get just about as low as you can go on this planet: minus-273˚C.

“That kind of temperature gives us access to superconductivity research, which is the transmission of electric current with absolutely no resistance,” Davis says.

The fact that electrical flow is improved by lower temperatures has been known and studied since the early 1900s. Many Canadians have noticed that during deep cold snaps their indoor lights may suddenly shine more brightly. The reason, say, is that the chill dramatically reduces the electrical resistance in the power lines outside their homes.

Davis says superconductivity results in the complete elimination of resistance, which requires extremely low temperatures. “The dilution refrigerator on order from England is about 10 feet long and, towards the bottom, has a small compartment in which we’ll place new materials we want to test,” Davis says.

The equipment looks nothing like the refrigerator in your kitchen. It’s a three-metre long tube suspended by a hoist and hanging in a special compartment beneath the basement floor of the university’s Centennial Centre for Interdisciplinary Science. “The compartment is completely separate from the building,” Davis says. “That eliminates the vibration and electrical or magnetic interference that affects the rest of CCIS.”

Davis says one goal of superconductivity experiments is to find materials that one day could be made to work with zero electrical resistance at more practical temperatures. 

“The holy grail of superconductivity is to find a material that eliminates at room temperature,” Davis says. “That’s when superconductivity could have applications for everyday life.”

Davis has been working closely with technicians at Oxford Instruments, a maker of high-tech tools and systems for research and industry, on the final design of the dilution refrigerator. If the work and projected delivery times stay on schedule, he expects that he and his students will be running low-temperature experiments by late this summer.

While some researchers are looking at futuristic applications such as magnetic levitation devices, Davis envisions something with a wider benefit. He says that superconductors on large-scale power grids could dramatically reduce world power consumption. “And that technology is within sight.” 

Explore further: Cool calculations for cold atoms: New theory of universal three-body encounters

add to favorites email to friend print save as pdf

Related Stories

Superconductivity's third side unmasked

Jun 17, 2011

The debate over the mechanism that causes superconductivity in a class of materials called the pnictides has been settled by a research team from Japan and China. Superconductivity was discovered in the pnictides ...

New property in warm superconductors discovered

Nov 17, 2010

(PhysOrg.com) -- Led by Simon Fraser University physicist Jeff Sonier, scientists at TRIUMF have discovered something that they think may severely hinder the creation of room-temperature (37 degrees Celsius) superconductors.

Recommended for you

New method for non-invasive prostate cancer screening

9 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

10 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

11 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

15 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Counterindigo
5 / 5 (1) Feb 20, 2012
Cool.