ORNL finding has materials scientists entering new territory

Feb 21, 2012

Solar cells, light emitting diodes, displays and other electronic devices could get a bump in performance because of a discovery at the Department of Energy's Oak Ridge National Laboratory that establishes new boundaries for controlling band gaps.

While complex have for years held great promise for a variety of information and energy applications, the challenge has been to devise a method to reduce band gaps of those insulators without compromising the material's useful physical properties.

The band gap is a major factor in determining in a material and directly determines the upper wavelength limit of . Thus, achieving wide band gap tunability is highly desirable for developing opto-electronic devices and energy materials.

Using a layer-by-layer growth technique for which Ho Nyung Lee of ORNL earned the Presidential Early Career Award for Scientists and Engineers, Lee and colleagues have achieved a 30 percent reduction in the band gap of complex metal oxides. The findings are outlined in the journal Nature Communications.

"Our approach to tuning band gaps is based on atomic-scale growth control of complex , yielding novel that do not exist in nature," Lee said. "This 'epitaxy' technique can be used to design entirely new materials or to specifically modify the composition of thin-film crystals with sub-nanometer accuracy."

While band gap tuning has been widely successful for more conventional semiconductors, the 30 percent band gap reduction demonstrated with oxides easily surpasses previous accomplishments of 6 percent – or 0.2 electron volt – in this area and opens pathways to new approaches to controlling in complex-oxide materials.

With this discovery, the potential exists for oxides with band gaps to be continuously controlled over 1 electron volt by site-specific alloying developed by the ORNL team. "Therefore," Lee said, "this work represents a major achievement using complex oxides that offer a number of advantages as they are very stable under extreme and severe environments."

ORNL's Michelle Buchanan, associate lab director for the Physical Sciences Directorate, expanded on Lee's sentiment. "This work exemplifies how basic research can provide technical breakthroughs that will result in vastly improved energy technologies," she said.

Explore further: Triplet threat from the sun

More information: "Wide band gap tunability in complex transition metal oxides by site-specific substitution,"

Related Stories

Enhanced efficiency when determining band gap in solids

Nov 23, 2010

(PhysOrg.com) -- "With density functional theory, we are able to put different elements in a computer simulation and do calculations based on quantum mechanics to find out about their different properties," Maria Chan tells ...

Using CNTs as infrared sensors

Jan 04, 2010

(PhysOrg.com) -- Semiconductors provide the bases for many different avenues of device research. Indeed, many of the technological devices that are commonplace in our society are reliant on semiconductors. However, as we ...

New alloys key to efficient energy and lighting

Mar 22, 2010

A recent advance by Arizona State University researchers in developing nanowires could lead to more efficient photovoltaic cells for generating energy from sunlight, and to better light-emitting diodes (LEDs) that could replace ...

Highlight: Solar - Bridging the gap

Dec 10, 2009

(PhysOrg.com) -- Titanium dioxide, the same inexpensive white pigment that protects us from sunburns, can be converted into a material that absorbs sunlight and could greatly increase the efficiency of solar energy cells.

Recommended for you

Triplet threat from the sun

17 hours ago

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Towards controlled dislocations

Oct 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0