Nanotechnology may lead to more energy-efficient electronics

Feb 14, 2012
Forests of carbon nanotubes can be grown in various forms. Closer inspection using an electron microscope enables you to see how individual nanotubes hold each other upright. In a transmission electron microscope it is possible to count the number of walls in individual nanotubes. The scale bar is 100 µm, 1 µm and 20 nm. Credit: Photo: Daniel Dahlin

Carbon nanotubes and graphene consist of just a couple of layers of carbon atoms, but they are lighter than aluminium, stronger than steel and can bend like spring-coils. Physicist Niklas Lindahl at the University of Gothenburg, Sweden, has been studying the unique properties of the materials, which in future may result in improved electronics and light, strong material.

Nanotechnology could revolutionise the manufacture of new types of materials. Niklas Lindahl has studied carbon nanotubes and , which are tubes and flat sheets consisting of a thin layer of . Their unique properties make them interesting to use in everything from in bicycles, to electronic computer components.

In his thesis, Niklas Lindahl demonstrates how carbon nanotubes can be made, and their mechanical properties. Under the right conditions, he used a carbonaceous gas to get carbon nanotubes to grow like forests, atom by atom. The "forests" consist of millions of carbon nanotubes that, despite being just a few nanometres in diameter, hold each other upright like stalks in a field of corn. The tubes, which are lighter than aluminium and stronger than steel when stretched, could be bent like spring-coils.

Nanotechnology may lead to more energy-efficient electronics. Credit: Photo: University of Gothenburg

Niklas Lindahl also demonstrates how membranes of graphene can be bent. Despite the fact that the membranes were made up of just a couple of layers of atoms, their bending rigidity could be determined using the same equations as those used to calculate in large steel spheres. Graphene membranes have many uses, including variable frequency generators in mobile phones, and mass sensors with the ability to measure individual atoms.

The thesis also demonstrates how similar graphene membranes can provide more energy-efficient electronics in the future. For example, suspended graphene electrodes can change the current more effectively through transistors by combining both mechanical and electrical control of the current.

Explore further: Transformations on carbon surfaces under the influence of metal nanoparticles and microwaves

More information: The thesis "Nanoelectromechanical systems from carbon nanotubes and graphene" was successfully defended on 27 January at the University of Gothenburg.

add to favorites email to friend print save as pdf

Related Stories

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Taming carbon nanotubes

Feb 07, 2011

Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to ...

Graphene applications in electronics and photonics

Nov 02, 2011

Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the ...

A breakthrough on paper that's stronger than steel

Apr 20, 2011

(PhysOrg.com) -- University of Technology, Sydney scientists have reported remarkable results in developing a composite material based on graphite that is a thin as paper and ten times stronger than steel.

Defect in graphene may present bouquet of possibilities

May 25, 2011

(PhysOrg.com) -- A class of decorative, flower-like defects in the nanomaterial graphene could have potentially important effects on the material's already unique electrical and mechanical properties, according ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.