'Mini-cellulose' molecule unlocks biofuel chemistry

Feb 16, 2012

A team of chemical engineers at the University of Massachusetts Amherst has discovered a small molecule that behaves the same as cellulose when it is converted to biofuel. Studying this 'mini-cellulose' molecule reveals for the first time the chemical reactions that take place in wood and prairie grasses during high-temperature conversion to biofuel. The new technical discovery was reported in the January 2012 issue of the journal Energy & Environmental Science and highlighted in Nature Chemistry.

The "mini-cellulose" molecule, called α-cyclodextrin, solves one of the major roadblocks confronting high-temperature biofuels processes such as pyrolysis or gasification. The complex chemical reactions that take place as wood is rapidly heated and breaks down to vapors are unknown. And current technology doesn't allow the use of computer models to track the chemical reactions taking place, because the molecules in wood are too large and the reactions far too complicated.

Paul Dauenhauer, assistant professor of chemical engineering and leader of the UMass Amherst research team, says the breakthrough achieved by studying the smaller surrogate molecule opens up the possibility of using computer simulations to study biomass. He says, "We calculated that it would take about 10,000 years to simulate the in real . The same biofuel reactions with 'mini-cellulose' can be done in a month!"

Already his team has used insight from studying the "mini-cellulose" to make significant progress in understanding wood chemistry, Dauenhauer says. Using the faster computer simulations, they can track the conversion of wood all the way to the chemical vapor products. These reactions include creating furans, that are important for the production of biofuels.

The discovered reactions occurring within wood will serve as the basis for designing advanced biofuel reactors, Dauenhauer says. By creating reaction models of wood conversion, the scientists can design biomass reactors to optimize the specific reactions that are ideal for production of biofuels. For biofuels production, "We want to maximize our new pathway to produce furans and minimize the formation of gases such as CO2," says Dauenhauer.

The of "mini-cellulose" was enabled by a new experimental technique for studying high-temperature biomass chemistry called "thin-film pyrolysis." It involves creating sheets of cellulose, which makes up 60 percent of biomass, that are very thin, just a few microns thick. When the sheets are very rapidly heated at over one million degrees Celsius per minute, they create volatile chemicals which are the precursors of biofuel.

Dauenhauer joined the university in 2009 and conducts his research as part of the Catalysis Center for Energy Innovation in collaboration with the University of Delaware and funded by the U.S. Department of Energy (DOE). His research team includes Professor Dion Vlachos and graduate students Matt Mettler, Alex Paulsen and Samir Mushrif.

Dauenhauer has received several high-profile grants in the past year. In May 2011, he awarded a five-year, $800,000 Early Career Award in Basic Energy Sciences from the DOE. The grant provides support for his research on understanding the catalysts that control the process of breaking down plant matter into chemicals and fuel byproducts.

In February 2011, he was awarded a one-year, $80,000 grant from the National Science Foundation to conduct basic research on pyrolysis. Additionally in 2011, he was awarded a three-year Young Faculty Award from the 3M Corporation.

Explore further: New star-shaped molecule breakthrough

Provided by University of Massachusetts at Amherst

4.3 /5 (4 votes)

Related Stories

Chemicals and biofuel from wood biomass

Dec 19, 2011

(PhysOrg.com) -- A method developed at Aalto University in Finland makes it possible to use microbes to produce butanol suitable for biofuel and other industrial chemicals from wood biomass. Butanol is particularly ...

Improved Reaction Data Heat Up the Biofuels Harvest

Aug 06, 2008

High food prices, concern over dwindling supplies of fossil fuels and the desire for clean, renewable energy have led many to seek ways to make ethanol out of cellulosic sources such as wood, hay and switchgrass. ...

Two-step chemical process turns raw biomass into biofuel

Feb 10, 2009

(PhysOrg.com) -- Taking a chemical approach, researchers at the University of Wisconsin-Madison have developed a two-step method to convert the cellulose in raw biomass into a promising biofuel. The process, which is described ...

Recommended for you

New star-shaped molecule breakthrough

18 hours ago

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0