New method makes culture of complex tissue possible in any lab

Feb 09, 2012

Scientists at the University of California, San Diego have developed a new method for making scaffolds for culturing tissue in three-dimensional arrangements that mimic those in the body. This advance, published online in the journal Advanced Materials, allows the production of tissue culture scaffolds containing multiple structurally and chemically distinct layers using common laboratory reagents and materials.

According to the UC San Diego researchers, this process is more affordable and widely feasible than previous methods that required expensive equipment and expertise.

The new approach is remarkably simple: solutions of the components of each layer, including polymers, are mixed with varying concentrations of a common inert reagent to control density. The solutions are layered so that the difference in density segregates each solution, and then polymerized so that they form a gel. The structure of each layer can be altered by varying the concentration of polymers, and the discreteness of the transition between layers can be altered by allowing the solutions to diffuse.

Lead author Jerome Karpiak, graduate student in the UCSD Biomedical Sciences Program, said, "We're excited about the relevance of this method to . Since it offers such straightforward spatial control over structure and composition of stratified tissue scaffolds, including cell type and density, this technology could help the field move much faster." Tissues cultured in vitro to mimic those in the body can potentially provide an alternative to transplantation for injured or degenerated tissue.

"We believe this approach will vastly broaden the number of labs capable of culturing complex tissue," said Adah Almutairi, PhD, assistant professor at the UCSD Skaggs School of Pharmacy and , the Department of and the Program at the UCSD Jacobs School of Engineering. "Because manipulation of structure and concentrations of signal molecules is much easier in this system than in intact organisms, it holds great potential to advance the study of development and disease." For example, this method may offer a novel approach to study how surrounding molecules affect the growth of axons in neurodevelopmental disorders.

Explore further: New tool identifies therapeutic proteins in a 'snap'

Related Stories

New biomaterial more closely mimics human tissue

May 26, 2011

(PhysOrg.com) -- A new biomaterial designed for repairing damaged human tissue doesn’t wrinkle up when it is stretched. The invention from nanoengineers at the University of California, San Diego marks ...

Polymeric material has potential for noninvasive procedures

Oct 03, 2011

Scientists at the University of California, San Diego have developed what they believe to be the first polymeric material that is sensitive to biologically benign levels of near infrared (NRI) irradiation, enabling the material ...

Mimicking biological complexity, in a tiny particle

Aug 16, 2011

Tiny particles made of polymers hold great promise for targeted delivery of drugs and as structural scaffolds for building artificial tissues. However, current production methods for such microparticles yield ...

New Nanoparticle to Help Researchers Study Angiogenesis

Jan 15, 2009

(PhysOrg.com) -- Adah Almutairi, Ph.D., assistant professor in the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California, San Diego, is first author of a paper recently published in the Proceedings of ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

16 hours ago

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0