Malaria parasite goes bananas before sex: new study

Feb 14, 2012
A thin-film Giemsa stained micrograph of ring-forms, and gametocytes of Plasmodium falciparum. Image: CDC

(PhysOrg.com) -- New research from the University of Melbourne shows how the malaria parasite (Plasmodium falciparum) changes into a banana shape before sexual reproduction, a finding that could provide targets for vaccine or drug development and may explain how the parasite evades the human immune system.

The work was conducted by an Australian research team led by Dr Matthew Dixon and PhD student Megan Dearnley from the Department of Biochemistry and Molecular Biology, Bio21 Institute at the University of Melbourne, and is published in the today.

Dr Dixon said the new study solves a 130-year old mystery, revealing how the most deadly of human malaria parasites, performs its shape-shifting.

“In 1880 the banana or crescent shape of the malaria parasite was first seen in the blood of a patient. Using a 3D microscope technique, we reveal that malaria uses a scaffold of special proteins to form a banana shape before ,” said Dr Dixon.

“As the malaria parasite can only reproduce in its ‘banana form’, if we can target these scaffold proteins in a vaccine or drug, we may be able to stop it reproducing and prevent malaria transmission entirely.”

When in its banana shape, the malaria parasite is passed from a human host to a mosquito where it reproduces in the mosquito gut. The study found that specific proteins form scaffolds, called microtubules, which lie underneath the parasite surface and elongate it into the sexual stage banana shape.

The work suggests that when the parasites are ready for sexual reproduction, they adopt the banana shape so that they can fit through the tiny sinusoidal slits in the spleen. This enables them to avoid the host's mechanical filtering and immune surveillance mechanisms and to survive in the circulation long enough to be picked up by a mosquito and transmitted to the next victim.

The banana shape was revealed in greater detail than ever before by using high-end imaging techniques - 3D Structured Illumination Microscopy and Cryo Electron Microscopy – conducted with the ARC Centre of Excellence for Coherent X-Ray Science. 

One child dies from malaria every minute in Africa. Around the world, the kills more than 600,000 people each year, most of them children and pregnant women, while another 225 million people suffer illness as a result of malaria infections. 

Explore further: Blocking a fork in the road to DNA replication

Related Stories

Unraveling malaria's genetic mysteries

Dec 22, 2011

(PhysOrg.com) -- Simon Fraser University researchers in biology and computing sciences are starting to piece together a picture that may help scientists and doctors save more than a million lives annually.

Recommended for you

Researchers capture picture of microRNA in action

15 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

17 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

19 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

20 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.