Origin of large polarization in multiferroic YMnO3 thin films

February 16, 2012
Figure 1: Crystal structure and film growth of multiferroic YMnO3 thin film

Multiferroic materials have attracted much interest because of their ability to control magnetism through the application of a voltage. This ability can be utilized to reduce the power required by electronic devices and to increase their speed. However, the number of multiferroic materials discovered has been small, and ferromagnetism and ferroelectricity in the already discovered materials are often weaker than the required values for using them as ferromagnets and ferroelectrics. Hence, novel multiferroic materials are being extensively sought.

In 2011, a team from the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) has succeeded in fabricating a YMnO3 multiferroic film that has dielectric polarization exceeding that of conventional multiferroic thin films. The team employed X-ray diffraction to investigate the magnetic structure and lattice strain of this film and discovered the origin of polarization. This achievement is expected to lead to the design of useful multiferroic materials.

The team further investigated the origin of large polarization of YMnO3 (thickness: 40 nm) by measuring soft and hard X-ray diffraction of the magnetic structure and , with a research team in KEK, the High Energy Accelerator Research Organization by using KEK's Photon Factory and Swiss Light Source.

Origin of large polarization in multiferroic YMnO3 thin films
Figure 2: Spin configurations of magnetic structures of multiferroic YMnO3 thin film (a) Spins align antiparallel to each other, resulting in a large lattice strain and large electric polarization. (b) Spins align helically along the b-axis, resulting in small electric polarization.

These measurements confirmed that the spin of Mn ions has two coexisting magnetic structures, namely the cycloidal and E-type antiferromagntic (AF) orderings. In addition, it was found that below 40 K, small appears as a result of the cycloidal ordering because the periodicity of the cycloidal is incommensurate with the crystal lattice. The E-type AF ordering appears in addition to the cycloidal ordering below 35 K. The periodicity of the E-type AF ordering is commensurate with the , and the lattice strain due to interactions between ions with parallel spins was found to be the cause for the large polarization.

Explore further: Predicting when, how spins of electrons arrange in one-dimensional multiferroic materials

More information: H. Wadati, J. Okamoto, M. Garganourakis, V. Scagnoli, U. Staub, Y. Yamasaki, H. Nakao, Y. Murakami, M. Mochizuki, M. Nakamura, M. Kawasaki, and Y. Tokura, Origin of the large polarization in multiferroic YMnO3 thin films revealed by soft and hard x-ray diffraction, Physical Review Letters, Published Jan. 27, 2012.

Related Stories

Fridge magnet transformed

March 11, 2011

The ubiquitous and unremarkable magnet, BaFe12O19, is manufactured in large volumes, has the simplest crystal structure in its class, and is often seen on refrigerator doors—but it is set for an interesting future. By ...

Multiferroics could lead to low-power devices

May 17, 2011

(PhysOrg.com) -- Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding ...

Applying pressure reaps material rewards

December 22, 2011

Researchers in Japan have succeeded in growing single crystals of yttrium manganite (YMnO3) using a high-pressure material-growth technique1. Developed by Shintaro Ishiwata and his colleagues from the RIKEN Advanced Science ...

Recommended for you

Doubling down on Schrödinger's cat

May 26, 2016

Yale physicists have given Schrödinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Possible case for fifth force of nature

May 26, 2016

A team of physicists at the University of California has uploaded a paper to the arXiv preprint server in which they suggest that work done by a team in Hungary last year might have revealed the existence of a fifth force ...

First movies of droplets getting blown up by x-ray laser

May 24, 2016

Researchers have made the first microscopic movies of liquids getting vaporized by the world's brightest X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory. The new data could lead to better and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.