Heart Lake holds water for Yellowstone's hydrothermal diversity theory

February 14, 2012

Within Yellowstone National Park, the water emanating from the park's famous hot springs and geysers seems to belong to either one of two distinct types. In some areas, subterranean waters rich in chlorine and dissolved silicates burst from the ground to create the park's iconic geysers. In other areas, highly acidic mud pools form from chlorine-deprived waters rich with sulfate ions.

In the 1950s, researchers proposed that these two distinct surface features actually stem from a single type of underground water. Across Yellowstone, geysers and mud pools are often separated by defined geographic boundaries, making a test of their interrelatedness difficult. In northwestern Wyoming, however, acid-rich and silica-rich waters coexist within a roughly 12 square kilometers (4.6 square kilometers) watershed that drains into nearby Heart Lake.

Drawing water and gas samples from pools and steam vents distributed throughout the Heart Lake Geyser Basin, Lowenstern et al. find support for the single-water-source hypothesis. On the basis of a wide array of chemical and hydrological analyses, including measurements of the concentrations of various dissolved minerals, isotope ratios, flow rates, and gas fluxes, the authors find that the diverse features in the Heart Lake Geyser Basin could stem from a single source of 205-degrees-Celsius (401-degrees-Fahrenheit) subsurface water.

The authors suggest that the chlorine-depleted, acidic mud pools, which populate the upper reaches of the basin, form as thermophilic bacteria to break down dissolved . That sulfur is carried from the water as it boils below the surface. Further downstream, after subsurface flow, boiling, and dilution with rain water, the original source arrives at the surface as the chlorine- and silica- rich waters typically associated with Yellowstone's geysers.

Explore further: Yellowstone Lake Shore Changing; UA Scientists Investigating Causes

More information: Generation and evolution of hydrothermal fluids at Yellowstone, Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003835 , 2012

Related Stories

Mimicking the moon's surface in the basement

August 6, 2010

(PhysOrg.com) -- A team of scientists used an ion beam in a basement room at Los Alamos National Laboratory to simulate solar winds on the surface of the Moon. The table-top simulation helped confirm that the Moon is inherently ...

Landsat satellites track Yellowstone's underground heat

December 8, 2011

(PhysOrg.com) -- Yellowstone National Park sits on top of a vast, ancient, and still active volcano. Heat pours off its underground magma chamber, and is the fuel for Yellowstone's famous features -- more than 10,000 hot ...

Recommended for you

How wind sculpted Earth's largest dust deposit

September 1, 2015

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists.

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.