Heart Lake holds water for Yellowstone's hydrothermal diversity theory

Feb 14, 2012

Within Yellowstone National Park, the water emanating from the park's famous hot springs and geysers seems to belong to either one of two distinct types. In some areas, subterranean waters rich in chlorine and dissolved silicates burst from the ground to create the park's iconic geysers. In other areas, highly acidic mud pools form from chlorine-deprived waters rich with sulfate ions.

In the 1950s, researchers proposed that these two distinct surface features actually stem from a single type of underground water. Across Yellowstone, geysers and mud pools are often separated by defined geographic boundaries, making a test of their interrelatedness difficult. In northwestern Wyoming, however, acid-rich and silica-rich waters coexist within a roughly 12 square kilometers (4.6 square kilometers) watershed that drains into nearby Heart Lake.

Drawing water and gas samples from pools and steam vents distributed throughout the Heart Lake Geyser Basin, Lowenstern et al. find support for the single-water-source hypothesis. On the basis of a wide array of chemical and hydrological analyses, including measurements of the concentrations of various dissolved minerals, isotope ratios, flow rates, and gas fluxes, the authors find that the diverse features in the Heart Lake Geyser Basin could stem from a single source of 205-degrees-Celsius (401-degrees-Fahrenheit) subsurface water.

The authors suggest that the chlorine-depleted, acidic mud pools, which populate the upper reaches of the basin, form as thermophilic bacteria to break down dissolved . That sulfur is carried from the water as it boils below the surface. Further downstream, after subsurface flow, boiling, and dilution with rain water, the original source arrives at the surface as the chlorine- and silica- rich waters typically associated with Yellowstone's geysers.

Explore further: Five anthropogenic factors that will radically alter northern forests in 50 years

More information: Generation and evolution of hydrothermal fluids at Yellowstone, Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003835 , 2012

add to favorites email to friend print save as pdf

Related Stories

Mimicking the moon's surface in the basement

Aug 06, 2010

(PhysOrg.com) -- A team of scientists used an ion beam in a basement room at Los Alamos National Laboratory to simulate solar winds on the surface of the Moon. The table-top simulation helped confirm that ...

Landsat satellites track Yellowstone's underground heat

Dec 08, 2011

(PhysOrg.com) -- Yellowstone National Park sits on top of a vast, ancient, and still active volcano. Heat pours off its underground magma chamber, and is the fuel for Yellowstone's famous features -- more ...

Recommended for you

More, bigger wildfires burning western US, study shows

6 hours ago

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...