Direct measurement of the formation length of photons

Feb 28, 2012

How long does it take an electron to form a photon? The answer would normally be: so short a time that it cannot be measured. However, the international CERN team responsible for experiment NA63 -- mainly staffed by physicists from Aarhus University -- has now succeeded in dragging out the process, thereby making it measurable.

They achieved this by utilising the phenomena of objects moving slower and shortening in length from Einstein's , along with two pieces of gold foil and a micrometre screw.

In Niels Bohr's model of the atom, electrons orbit the in 'shells' – the so-called stationary states. Light is emitted by a quantum leap between a high-lying shell and one nearer the nucleus. However, it is impossible to find the electron between the two shells, so it could be thought that the light emission process itself was instantaneous: the electron is in the outer shell and immediately after sending out light, it is in the inner one.

However, Associate Professor Ulrik I. Uggerhøj, PhD student Kristoffer K. Andersen, Aarhus University, and the other NA63 members actually found that it takes the electron a measurable amount of time to emit light.

By letting the electron pass two very flat gold foils stretched out at a distance that can be measured with a precision of a few micrometres, they can 'force' the electron to emit shortwave light in a well-defined area. The distance between the foils corresponds to the length taken to form the .

The results have been published in the journal Physical Review Letters under 'highlights'.

Explore further: Physicist demonstrates dictionary definition was dodgy

More information: prl.aps.org/abstract/PRL/v108/i7/e071802

add to favorites email to friend print save as pdf

Related Stories

New research improves quality of free electron laser

Jun 02, 2011

The free electron laser is the next step in the development of equipment to help us see the structure of materials. Nino Čutić at MAX-lab in Lund, Sweden, has done a PhD in further improving the test free electron ...

New record for measurement of atomic lifetime

Sep 07, 2011

Researchers at the Niels Bohr Institute have measured the lifetime of an extremely stable energy level of magnesium atoms with great precision. Magnesium atoms are used in research with ultra-precise atomic ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

44 minutes ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

4 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

18 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Bake your own droplet lens

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

How do liquid foams block sound?

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

New breast cancer imaging method promising

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...