Study of ferroelectric domain walls offers a new nanoscale conduction path

February 22, 2012
Study of Ferroelectric domain walls offers a new nanoscale conduction path
SPM images of the (110) surface of cleaved h-HoMnO3. (top) PFM image showing in-plane ferroelectric domains (oriented vertically, red arrows). (bottom) cAFM image showing enhanced conduction along tail-to-tail domain walls; images are 4 microns per side.

( -- Facility users from Rutgers University together with the Center for Nanoscale Materials' Electronic & Magnetic Materials & Devices Group have identified two-dimensional sheets of charge formed at the boundaries of ferroelectric domains in a multiferroic material.

These two-dimensional charged sheets are not pinned by unstable defects, chemical dopants, or structural interface, but are formed naturally as the inevitable by-products of topological vortices. This discovery is an important step in understanding the semiconducting properties of the domains and in small-gap ferroelectrics.

It also suggests a new and natural platform for exploring transport of charge carriers confined at interfaces or surfaces, which is one of the major playgrounds in condensed matter physics for emergent phenomena.

The team focused on hexagonal HoMnO3, which is a multiferroic material where antiferromagnetism and ferroelectricity coexist and — most intriguingly — magnetic, electric, and mechanical forces can be coupled to one another. In order to measure these various material properties simultaneously and on nanometer length scales, the researchers used in situ conductive atomic force microscopy (cAFM), piezo-response force microscopy (PFM), and Kelvin-probe force microscopy (KPFM) at low temperatures.

The results demonstrate that topological defects can be harnessed to stabilize charged 180-deg domain walls in multiferroics, opening up opportunities for a new kind of nanoscale conduction channel in multifunctional devices. Charged ferroelectric domain walls may provide novel platforms for creating a correlated two-dimensional electron gas without chemical doping.

Explore further: Domain walls that conduct electricity

More information: W. Wu et al., “Conduction of topologically-protected charged ferroelectric domain walls,” Phys. Rev. Lett., 108, 077203 (2012).

Related Stories

Domain walls that conduct electricity

January 29, 2009

The logic and memory functions of future electronic devices could shrink dramatically - to one or two nanometers (billionths of a meter) instead of the many tens of nanometers that characterize today's most advanced elements ...

Small and stable ferroelectric domains

March 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Conducting ferroelectrics may be key to new electronic memory

April 25, 2011

( -- Novel properties of ferroelectric materials discovered at the Department of Energy's Oak Ridge National Laboratory are moving scientists one step closer to realizing a new paradigm of electronic memory storage.

Structural consequences of nanolithography

August 11, 2011

( -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the nanoscale lithography ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.