Face-to-face with some shattered lunar boulders

Feb 28, 2012 by Jason Major, Universe Today
The remains of crumbled boulders in Schiller crater. Credit: NASA/GSFC/Arizona State University

Breaking up may be hard to do, but these two lunar boulders seem to have succeeded extremely well! Imaged by the Lunar Reconnaissance Orbiter Camera (LROC) in October of 2009, this crumbled couple was recently identified by Moon Zoo team member Dr. Anthony Cook and brought to the attention of the project’s forum moderator.

The tracks left in the regolith — lunar soil — behind the boulders tell of their past rolling journeys down the slope of the elongated Schiller crater, in which they reside. Rolling boulders have been spotted before on the Moon, but what made these two split apart? And…why does that one on the lower right look so much like half a face?

Several things can cause lunar boulders to come loose and take the nearest downhill course. Meteorite impacts can shake the ground locally, giving the rocks enough of a nudge to set them on a roll. And moonquakes — the lunar version of earthquakes, as the name implies (although not due to tectonic plate shifts but rather to more mysterious internal lunar forces) — can also dislodge large boulders.

The low gravity on the can make large rocks take a bounding path, evidenced by the dotted-line appearance of some of the trails.

Could all that bounding and bouncing have made the two boulders above shatter apart? Or was something else the cause of their crumbling?

Dr. Cook suggested that the boulders could have fractured before they began rolling, and then the added stress of their trip down the crater’s slope (uphill is to the right) made them break apart at the end of their trip… possibly due to further weathering and the extreme temperature variations of lunar days and nights.

Face-to-face with some shattered lunar boulders
This is one rock that's not happy about its breakup!

Although a sound idea, Dr. Cook added, “I’m a bit puzzled though why the one on the top left has rock debris so far away from the centre. The boulder that looks like a skull rock on the bottom right has debris a lot closer to it, that could simply be explained by bits falling off as one would expect from the explanation above.”

Another idea is that the boulders were struck by meteorites, but it seems extremely improbable that two would have been hit right next to each other. Still, not impossible, especially given the geologic time spans in play.

And as far as the “skull rock” boulder is concerned… that’s a little something called pareidolia, the tendency for our brains to interpret random shapes as something particularly significant. In this case it’s a human face, one of the most popular forms of pareidolia (perhaps best known by the famous “Face on Mars”, which, as we all now know, has been since shown to be just another Martian mesa.)

It does look like a face though, and not a particularly happy one!

Find out more about rolling boulders and Schiller crater on the LROC site hosted by Arizona State University here, and take a look at the full image scan of the region yourself… you may find more of these broken-up rolling rocks!

Explore further: SpaceX breaks ground on Texas rocket launch site

add to favorites email to friend print save as pdf

Related Stories

A bouncing moon boulder

Feb 08, 2012

One solitary boulder on the Moon apparently decided to take a little journey. The Lunar Reconnaissance Orbiter Camera captured the track of a bouncing, rolling 9-meter boulder that used to sit along the rim ...

New boulder frog discovered

Oct 07, 2011

(PhysOrg.com) -- Scientists have discovered two new species of boulder-dwelling frogs, hidden in remote areas of rainforest in north-east Queensland.

LRO lets you stand on the rim of Aristarchus crater

Dec 30, 2011

Have you ever you looked up at the bright, cavernous Aristarchus Crater on the Moon through a telescope or binoculars and wondered what it would be like to stand on the rim and peer inside? Spectacular new ...

One year of the moon in 2.5 minutes

Jun 15, 2011

We don’t always have the time or ability to see the Moon every night of the year, but this video, from the Goddard Space Flight Center Scientific Visualization Studio, uses data from the Lunar Reconnaissance Orbiter ...

Recommended for you

Getting to the root of the problem in space

11 minutes ago

When we go to Mars, will astronauts be able to grow enough food there to maintain a healthy diet? Will they be able to produce food in NASA's Orion spacecraft on the year-long trip to Mars? How about growing ...

The difference between CMEs and solar flares

2 hours ago

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explain ...

Scientific instruments of Rosetta's Philae lander

2 hours ago

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

How ancient impacts made mining practical

4 hours ago

About 1.85 billion years ago, in what would come to be known as Sudbury Canada, a 10 kilometer wide asteroid struck with such energy that it created an impact crater 250 kilometers wide. Today the chief industry of Sudbury ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

evropej
1 / 5 (2) Feb 28, 2012
Looks like a mean face, here comes the alien comments lol.
Extreme temperature variation seems like the mechanism to me.