Finding explosives with laser beams

Feb 27, 2012 By Florian Aigner
A bright laser beam hits the sample, the scattered light is collected by a telescope.

Scientists at Vienna University of Technology have found a way to detect chemicals over long distances, even if they are enclosed in containers.

People like to keep a safe distance from explosive substances, but in order to analyze them, close contact is usually inevitable. At the Vienna University of Technology, a new method has now been developed to detect chemicals inside a over a distance of more than a hundred meters. is scattered in a very specific way by different substances. Using this light, the contents of a nontransparent container can be analyzed without opening it.

Scattered Light as a “Chemical Fingerprint”

“The method we are using is Raman-spectroscopy”, says Professor Bernhard Lendl (TU Vienna). The sample is irradiated with a laser beam. When the light is scattered by the molecules of the sample, it can change its energy. For example, the photons can transfer energy to the molecules by exciting molecular vibrations. This changes the wavelength of the light – and thus its colour. Analyzing the colour spectrum of the scattered light, scientists can determine by what kind of molecules it must have been scattered.

Measuring over Great Distances – with Highest Precision

“Until now, the sample had to be placed very close to the laser and the light detector for this kind of Raman-spectroscopy”, says Bernard Zachhuber. Due to his technological advancements, measurements can now be made over . “Among hundreds of millions of photons, only a few trigger a Raman-scattering process in the sample”, says Bernhard Zachhuber. These scattered particles of light are scattered uniformly in all directions. Only a tiny fraction travel back to the light detector. From this very weak signal, as much information as possible has to be extracted. This can be done using a highly efficient telescope and extremely sensitive light detectors.

In this project (funded by the EU) the researchers at TU Vienna collaborated with private companies and with partners in public safety, including The Spanish Guardia Civil who are are extremely interested in the new technology. During the project, the Austrian military was also involved. On their testing grounds the researchers from TU Vienna could put their method to the extreme. They tested frequently used explosives, such as TNT, ANFO or RDX. The tests were highly successful: “Even at a distance of more than a hundred meters, the substances could be detected reliably”, says Engelene Chrysostom (TU Vienna).

Seeing Through Walls

Raman spectroscopy over long distances even works if the sample is hidden in a nontransparent container. The laser beam is scattered by the container wall, but a small portion of the beam penetrates the box. There, in the sample, it can still excite Raman-scattering processes. “The challenge is to distinguish the container’s from the sample signal”, says Bernhard Lendl. This can be done using a simple geometric trick: The hits the container on a small, well-defined spot. Therefore, the light signal emitted by the container stems from a very small region. The light which enters the container, on the other hand, is scattered into a much larger region. If the detector telescope is not exactly aimed at the point at which the laser hits the container but at a region just a few centimeters away, the characteristic light signal of the contents can be measured instead of the signal coming from the container.

The new method could make security checks at the airport a lot easier – but the area of application is much wider. The method could be used wherever it is hard to get close to the subject of investigation. It could be just as useful for studying icebergs as for geological analysis on a Mars mission. In the industry, a  broad range of possible applications could be opened up.

Explore further: Fiber-optic microscope will help physicians detect cancer, diseases at early stages

Provided by Vienna University of Technology

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Authenticating ancient artifacts

Aug 09, 2011

(PhysOrg.com) -- Piecing together the history of ancient ceramic objects can be difficult, especially when all that remains is a few small shards. However, clues about the authenticity and provenance of such ...

New material promises faster electronics

Jun 28, 2011

The novel material graphene makes faster electronics possible. Scientists at the Faculty of Electrical Engineering and Information Technology at the Vienna University of Technology (TU Vienna) developed light-detectors ...

Physicists rotate beams of light

Apr 05, 2011

Controlling the rotation of light – this amazing feat was accomplished at the Vienna University of Technology (TU Vienna), by means of a ultra thin semiconductor. This can be used to create a transistor ...

Counting atoms with glass fiber

Dec 07, 2011

(PhysOrg.com) -- Glass fiber cables are indispensable for the internet – now they can also be used as a quantum physics lab. The Vienna University of Technology is the only research facility in the world, ...

Vienna physicists create quantum twin atoms

May 02, 2011

At the Vienna University of Technology, sophisticated atomchips have been used to create pairs of quantum mechanically connected atom-twins. Until now, similar experiments were only possible using photons.

NRL Develops Technique To Speed Detection Process

Feb 15, 2010

(PhysOrg.com) -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

Recommended for you

Smart sensor technology to combat indoor air pollution

Apr 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...