Researchers efficiently couple light from a plane wave into a surface plasmon mode

Feb 02, 2012 By Vladimir Aksyuk

Researchers from the NIST Center for Nanoscale Science and Technology have made a grating coupler that transmits over 45 % of the incident optical energy from a plane wave into a single surface plasmon polariton (SPP) mode propagating on a flat gold surface, an order-of-magnitude increase over any SPP grating coupler reported to date.

Surface plasmons are propagating waves of light tightly confined to a metal surface via coupling with oscillating electrons in the metal. SPPs have been used to route signals for optical interconnects and to concentrate light for .

The researchers’ simple integrated coupler may improve performance and lower packaging costs for such devices and may also enable high-frequency optical connections between devices over longer distances.  The researchers developed an analytical model of the coupling process to optimize the depth, width, and period of the identical rectangular grating groves that they nanofabricated on a .

Optical measurements on different sets of gratings confirmed the model’s prediction that the highest efficiency would occur with “critical coupling,” when the scattering by the grating groves is matched to the intrinsic losses of the SPP propagating on the grating. Because these couplers can be used to excite surface plasmonic devices more efficiently, the researchers expect that they will enable the development of a variety of future on-chip devices.

Explore further: Could 'Jedi Putter' be the force golfers need?

More information: An efficient large-area grating coupler for surface plasmon polaritons, S. T. Koev, et al., Plasmonics, published online November 2011, 1-9 (2011).

add to favorites email to friend print save as pdf

Related Stories

Plasmonic device converts light into electricity

Nov 09, 2011

(PhysOrg.com) -- While the most common device for converting light into electricity may be photovoltaic (PV) solar cells, a variety of other devices can perform the same light-to-electricity conversion, such ...

Optical Atomic Clock: A long look at the captured atoms

Feb 05, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.