Researchers efficiently couple light from a plane wave into a surface plasmon mode

Feb 02, 2012 By Vladimir Aksyuk

Researchers from the NIST Center for Nanoscale Science and Technology have made a grating coupler that transmits over 45 % of the incident optical energy from a plane wave into a single surface plasmon polariton (SPP) mode propagating on a flat gold surface, an order-of-magnitude increase over any SPP grating coupler reported to date.

Surface plasmons are propagating waves of light tightly confined to a metal surface via coupling with oscillating electrons in the metal. SPPs have been used to route signals for optical interconnects and to concentrate light for .

The researchers’ simple integrated coupler may improve performance and lower packaging costs for such devices and may also enable high-frequency optical connections between devices over longer distances.  The researchers developed an analytical model of the coupling process to optimize the depth, width, and period of the identical rectangular grating groves that they nanofabricated on a .

Optical measurements on different sets of gratings confirmed the model’s prediction that the highest efficiency would occur with “critical coupling,” when the scattering by the grating groves is matched to the intrinsic losses of the SPP propagating on the grating. Because these couplers can be used to excite surface plasmonic devices more efficiently, the researchers expect that they will enable the development of a variety of future on-chip devices.

Explore further: And so they beat on, flagella against the cantilever

More information: An efficient large-area grating coupler for surface plasmon polaritons, S. T. Koev, et al., Plasmonics, published online November 2011, 1-9 (2011).

add to favorites email to friend print save as pdf

Related Stories

Plasmonic device converts light into electricity

Nov 09, 2011

(PhysOrg.com) -- While the most common device for converting light into electricity may be photovoltaic (PV) solar cells, a variety of other devices can perform the same light-to-electricity conversion, such ...

Optical Atomic Clock: A long look at the captured atoms

Feb 05, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0