Chemists develop faster, more efficient protein labeling

Feb 05, 2012

North Carolina State University researchers have created specially engineered mammalian cells to provide a new "chemical handle" which will enable researchers to label proteins of interest more efficiently, without disrupting the normal function of the proteins themselves or the cells in which they are found.

Protein labeling is used by researchers in a variety of fields to help them understand how these important affect the normal functioning of cells. Currently, proteins are labeled for study simply by fusing them to other , which allows researchers to use to track their movements through a cell. This approach has several drawbacks, however, not least being that the fluorescent proteins are often large enough to affect the function of the of interest.

Dr. Alex Deiters, associate professor of , along with colleague Dr. Jason Chin of the Laboratory of at the Medical Research Council in Cambridge, U.K., have developed a way to attach a fluorophore – a fluorescent molecule about 20 times smaller than the fluorescent proteins currently in use – to a protein that is expressed in a mammalian cell.

Deiters and Chin developed a special 21st amino acid that they added to cells that were specially engineered to incorporate this amino acid into the protein they wanted to study (there are normally only 20 amino acids). This 21st amino acid has a "chemical handle" that only reacts with a specifically designed fluorophore, but not any cellular components. According to Deiters, "The reaction between the modified protein and the fluorophore is extremely fast, high yielding, and generates a stable link between both reaction partners. This novel methodology enables future cell biological studies that were previously not possible."

The research appears in the Feb. 5 issue of Nature Chemistry.

"We found that our approach gave us a higher yield of labeled proteins and that the binding reaction was 50 times faster than with current methods," Deiters says. "Additionally, it took less reagent to complete the reaction, so overall we have a faster, more efficient method for protein labeling, and less chance of interfering with the normal function of the proteins and cells being studied."

The research was funded by the National Institutes of Health and the National Science Foundation. The Department of Chemistry is part of NC State's College of Physical and Mathematical Sciences.

Explore further: Potential therapy for the Sudan strain of Ebola could help contain some future outbreaks

More information: "Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction", Feb. 5, 2012 in Nature Chemistry.

Related Stories

Chemists design new way to fluorescently label proteins

Jun 01, 2010

(PhysOrg.com) -- Since the 1990s, a green fluorescent protein known simply as GFP has revolutionized cell biology. Originally found in a Pacific Northwest jellyfish, GFP allows scientists to visualize proteins ...

New protein tag enhances view within living cells

Feb 22, 2008

The view into the inner world of living cells just got a little brighter and more colorful. A powerful new research tool, when used with other labeling technologies, allows simultaneous visualization of two or more different ...

Researchers extend genetic code of an entire animal

Aug 15, 2011

(PhysOrg.com) -- Researchers Sebastian Greiss and Jason Chin of the Medical Research Council's Laboratory of Molecular Biology in Cambridge, have succeeded in manipulating the DNA of a nematode such that a ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

User comments : 0