Biofuel cell generates electricity when implanted in False Death's Head Cockroach

Feb 01, 2012
Biofuel cell generates electricity when implanted in False Death's Head Cockroach

Scientists have developed and implanted into a living insect — the False Death's Head Cockroach — a miniature fuel cell that converts naturally occurring sugar in the insect and oxygen from the air into electricity. They term it an advance toward a source of electricity that could, in principle, be collected, stored and used to power sensors, cameras, microphones and a variety of other microdevices attached to the insects in a paper in the Journal of the American Chemical Society.

Daniel Scherson and colleagues explain that scientists are developing ways to generate from chemicals inside living things or from their movements to implanted sensors or other miniature devices. Such devices could provide researchers or physicians with important information about processes going on inside insects, animals or even people without the need for batteries. They also could someday power artificial organs, nanorobots or wearable personal electronics. But before such "sci-fi"-sounding advances can be realized, practical biofuel cells are necessary. That's why Scherson and colleagues developed an implantable for use in a live cockroach.

The biofuel cell uses a sugar in the cockroaches' bodies called trehalose and oxygen from the air to generate electricity. It did not kill the insects or impair functioning of their internal organs. They also implanted the device into a Shiitake mushroom, and it worked. Neither fuel cell — in the roach or the mushroom — produced a large amount of energy, so the team says that any microdevice that requires high power could operate only intermittently. The electricity generated by the biofuel cell, "in principle, could be collected and stored and subsequently used to power a variety of microdevices," say the researchers.

Explore further: Cells build 'cupboards' to store metals

More information: An Implantable Biofuel Cell for a Live Insect, J. Am. Chem. Soc., 2012, 134 (3), pp 1458–1460. DOI:10.1021/ja210794c

Abstract
A biofuel cell incorporating a bienzymatic trehalase|glucose oxidase trehalose anode and a bilirubin oxidase dioxygen cathode using Os complexes grafted to a polymeric backbone as electron relays was designed and constructed. The specific power densities of the biofuel cell implanted in a female Blaberus discoidalis through incisions into its abdomen yielded maximum values of ca. 55 μW/cm2 at 0.2 V that decreased by only ca. 5% after ca. 2.5 h of operation.

Related Stories

Printable biofuel cell developed in Finland

Nov 08, 2006

An enzyme-based power source is a viable source of electricity for the rapidly proliferating RFID tags used in the medical sector and logistics. Applications include plasters containing a memory circuit and ...

Recommended for you

Cells build 'cupboards' to store metals

14 hours ago

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.