Understanding how bacteria come back from the dead

Feb 02, 2012

Salmonella remains a serious cause of food poisoning in the UK and throughout the EU, in part due to its ability to thrive and quickly adapt to the different environments in which it can grow. New research involving a team of IFR scientists, funded by BBSRC, has taken the first detailed look at what Salmonella does when it enters a new environment, which could provide clues to finding new ways of reducing transmission through the food chain and preventing human illness.

Bacteria can multiply rapidly, potentially doubling every 20 minutes in ideal conditions. However, this phase is preceded by a period known as lag phase, where no increase in cell number is seen. Lag phase was first described in the 19th Century, and was assumed to be needed by bacteria to prepare to exploit new . Beyond this, surprisingly little was known about lag phase, other than bacteria are metabolically active in this period. But exactly what are bacteria doing physiologically during this period?

To fill in this researchers at IFR, along with colleagues at Campden BRI, a membership-based organisation carrying out research and development for the food and drinks industry, have developed a simple and robust system for studying the biology of Salmonella during lag phase. In this system, lag phase lasts about two hours, but the cells sense their new environment remarkably quickly, and within four minutes switch on a specific set of genes, including some that control the uptake of specific nutrients.

For example, one nutrient accumulated is phosphate which is needed for many , and a gene encoding a phosphate transporter was the most upregulated gene during the first four minutes of lag phase. The cellular uptake mechanisms for iron were also activated during lag phase, and are needed for key aspects of bacterial metabolism. This increase in iron leads to a short term sensitivity to oxidative damage. Manganese and calcium are also accumulated in lag phase, but are lost from the cell during exponential growth.

This new understanding of Salmonella metabolism during lag phase show how rapidly Salmonella senses favourable conditions and builds up the materials needed for growth. This study was carried out by two BBSRC-CASE studentships, which were partially funded by Campden BRI.

Future research to work out the regulatory mechanisms behind these processes and the switch from lag phase to exponential growth will tell us more about how can flourish in different environments, and could point to new ways of controlling its transmission in the .

Explore further: Researchers uncover secrets of internal cell fine-tuning

Provided by Norwich BioScience Institutes

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Study shows jet lag may be harmful

Dec 27, 2006

A study done on mice has shown that jet lag may not only be a nuisance to frequent fliers but it could be al health risk.

How bugs avoid getting sick after sex

Aug 18, 2006

Scientists at the Institute of Food Research in Norwich revealed today how the promiscuous Salmonella bacterium protects itself from getting ill after acquiring foreign DNA through "sex" with other bacteria. ...

BIOTRACER model tackles Salmonella

May 24, 2011

Protecting consumers from contaminated foods is one of the most important objectives of the EU. Helping drive this effort is the BIOTRACER ('Improved bio-traceability of unintended microorganisms and their ...

Chopping off protein puts immune cells into high gear

Jan 24, 2007

The complex task of launching a well-organized, effective immune system attack on specific targets is thrown into high gear when either of two specific enzymes chop a protein called LAG-3 off the immune cells leading that ...

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

1 hour ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

2 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

8 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0