Cure of ADPKD by selection for spontaneous genetic repair events in Pkd1-mutated iPS cells

February 10, 2012

A research group including Kyoto University researchers demonstrates that mouse iPS cells, in which genetic correction occurs spontaneously through mitotic recombination, is selectable from the population of genetically mutated iPS cells in the mouse model of autosomal dominant polycystic kidney disease (ADPKD). This technology could be applicable of genome editing in human iPS cells for curing patients with genetic disorders.

This paper was issued to at 14:00 (PST) on February 9 2012.

Induced pluripotent stem cells (iPSCs) generated by epigenetic reprogramming of personal have limited therapeutic capacity for patients suffering from genetic disorders. Here we demonstrate restoration of a genomic mutation heterozygous for Pkd1 ( 1) deletion (Pkd1(+/-) to Pkd1(+/R+)) by spontaneous mitotic recombination.

Notably, recombination between homologous chromosomes occurred at a frequency of 1-2 per 10,000 iPSCs. Southern blot hybridization and genomic PCR analyses demonstrated that the genotype of the mutation-restored iPSCs was indistinguishable from that of the wild-type cells.

Importantly, the frequency of cyst generation in kidneys of adult chimeric mice containing Pkd1(+/R+) iPSCs was significantly lower than that of adult chimeric mice with parental Pkd1(+/-) iPSCs, and indistinguishable from that of wild-type mice.

This repair step could be directly incorporated into iPSC development programmes prior to , offering an invaluable step forward for patients carrying a wide range of genetic disorders.

Explore further: Gene silencing may be responsible for induced pluripotent stem cells' limitations

More information: Cure of ADPKD by selection for spontaneous genetic repair events in Pkd1-mutated iPS cells, Li-Tao Cheng, et al. Stem Cell Engineering, Institute for Frontier Medical Scinences, Kyoto University, JAPAN, Urology, Teikyo University, JAPAN, Cardiovascular and Neuronal Remodelling, LIGHT, Leeds University, UK, PLoS ONE 7(2): e32018. doi:10.1371/journal.pone.0032018

Related Stories

Recommended for you

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.