Cure of ADPKD by selection for spontaneous genetic repair events in Pkd1-mutated iPS cells

Feb 10, 2012

A research group including Kyoto University researchers demonstrates that mouse iPS cells, in which genetic correction occurs spontaneously through mitotic recombination, is selectable from the population of genetically mutated iPS cells in the mouse model of autosomal dominant polycystic kidney disease (ADPKD). This technology could be applicable of genome editing in human iPS cells for curing patients with genetic disorders.

This paper was issued to at 14:00 (PST) on February 9 2012.

Induced pluripotent stem cells (iPSCs) generated by epigenetic reprogramming of personal have limited therapeutic capacity for patients suffering from genetic disorders. Here we demonstrate restoration of a genomic mutation heterozygous for Pkd1 ( 1) deletion (Pkd1(+/-) to Pkd1(+/R+)) by spontaneous mitotic recombination.

Notably, recombination between homologous chromosomes occurred at a frequency of 1-2 per 10,000 iPSCs. Southern blot hybridization and genomic PCR analyses demonstrated that the genotype of the mutation-restored iPSCs was indistinguishable from that of the wild-type cells.

Importantly, the frequency of cyst generation in kidneys of adult chimeric mice containing Pkd1(+/R+) iPSCs was significantly lower than that of adult chimeric mice with parental Pkd1(+/-) iPSCs, and indistinguishable from that of wild-type mice.

This repair step could be directly incorporated into iPSC development programmes prior to , offering an invaluable step forward for patients carrying a wide range of genetic disorders.

Explore further: Researchers discover new strategy germs use to invade cells

More information: Cure of ADPKD by selection for spontaneous genetic repair events in Pkd1-mutated iPS cells, Li-Tao Cheng, et al. Stem Cell Engineering, Institute for Frontier Medical Scinences, Kyoto University, JAPAN, Urology, Teikyo University, JAPAN, Cardiovascular and Neuronal Remodelling, LIGHT, Leeds University, UK, PLoS ONE 7(2): e32018. doi:10.1371/journal.pone.0032018

add to favorites email to friend print save as pdf

Related Stories

Could patients' own kidney cells cure kidney disease?

Jul 27, 2011

Approximately 60 million people across the globe have chronic kidney disease, and many will need dialysis or a transplant. Breakthrough research published in the Journal of the American Society Nephrology (JASN) indicates that p ...

Adult stem cells take root in livers and repair damage

May 11, 2011

Johns Hopkins researchers have demonstrated that human liver cells derived from adult cells coaxed into an embryonic state can engraft and begin regenerating liver tissue in mice with chronic liver damage.

Recommended for you

Researchers discover new strategy germs use to invade cells

12 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

12 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0