Collective action: Occupied genetic switches hold clues to cells' history

Feb 03, 2012
This is a fruit fly embryo showing the cells that will become gut (green/yellow) and heart (red) muscle. Credit: EMBL/Furlong

If you wanted to draw your family tree, you could start by searching for people who share your surname. Cells, of course, don't have surnames, but scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found that genetic switches called enhancers, and the molecules that activate those switches – transcription factors – can be used in a similar way, as clues to a cell's developmental history. The study, published today in Cell, also unveils a new model for how enhancers function.

Looking at fruit fly embryos, Guillaume Junion and Mikhail Spivakov, collaborating scientists in the groups of Eileen Furlong at EMBL and Ewan Birney at EMBL's European Bioinformatics Institute (EMBL-EBI), found that, in heart muscle , which are meant to be active aren't the only ones that have groups of attached. Surprisingly, enhancers that should be active only in the neighbouring gut muscle were also occupied by transcription factors in heart cells.

"Although it may seem counter-intuitive to leave unnecessary available for activation and then have to actively suppress them, the findings make sense in developmental terms," says Furlong.

Both heart and gut develop from the same pool of precursor cells. Enhancers for both groups seem to be made available to transcription factors in the precursor cells, before they 'grow up' to be either heart or muscle cells. If this is the case, scientists could work out the relationships between cells by looking at what occupied enhancers they share.

Intriguingly, heart muscle cells don't actually have the transcription factors that bind to gut enhancers in gut muscle cells. Instead, the gut enhancers in heart cells were occupied by transcription factors produced only by the heart.

Furlong and colleagues found that transcription factors are able to attach themselves to enhancers in groups, with some transcription factors binding directly to the enhancer's DNA and others binding to those enhancer-bound transcription factors. This means that the genetic sequence of these enhancers can vary greatly, yet they are occupied as a united group – a strategy that differs from the two ways in which enhancers were already known to function. This flexibility in the enhancer's genetic sequence means that it can mutate without disastrous effects, giving it some evolutionary flexibility.

The EMBL scientists are now investigating how far that flexibility extends. They are looking at variation between species, extending their studies to another species of fruit fly, Drosophila virilis, which is, genetically speaking, as different from the commonly-used Drosophila melanogaster as humans are from chickens.

Explore further: Fighting bacteria—with viruses

Related Stories

Tracking genes' remote controls

Jan 09, 2012

As an embryo develops, different genes are turned on in different cells, to form muscles, neurons and other bodily parts. Inside each cell's nucleus, genetic sequences known as enhancers act like remote controls, ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0