The wild early lives of today's most massive galaxies

Jan 25, 2012
The LABOCA camera on the ESO-operated 12-meter Atacama Pathfinder Experiment (APEX) telescope reveals distant galaxies undergoing the most intense type of star formation activity known, called a starburst. This image shows these distant galaxies, found in a region of sky known as the Extended Chandra Deep Field South, in the constellation of Fornax (The Furnace). The galaxies seen by LABOCA are shown in red, overlaid on an infrared view of the region as seen by the IRAC camera on the Spitzer Space Telescope. By studying how some of these distant starburst galaxies are clustered together, astronomers have found that they eventually become so-called giant elliptical galaxies -- the most massive galaxies in today's universe. The galaxies are so distant that their light has taken around ten billion years to reach us, so we see them as they were about ten billion years ago. Because of this extreme distance, the infrared light from dust grains heated by starlight is redshifted into longer wavelengths, and the dusty galaxies are therefore best observed in submillimeter wavelengths of light. The galaxies are thus known as submillimeter galaxies. Credit: ESO, APEX (MPIfR/ESO/OSO), A. Weiss et al., NASA Spitzer Science Center

(PhysOrg.com) -- Using the APEX telescope, a team of astronomers has found the strongest link so far between the most powerful bursts of star formation in the early Universe, and the most massive galaxies found today. The galaxies, flowering with dramatic starbursts in the early Universe, saw the birth of new stars abruptly cut short, leaving them as massive — but passive — galaxies of aging stars in the present day. The astronomers also have a likely culprit for the sudden end to the starbursts: the emergence of supermassive black holes.

Astronomers have combined observations from the LABOCA camera on the ESO-operated 12-metre Atacama Pathfinder Experiment () with measurements made with ESO's Very Large Telescope, NASA's Spitzer Space Telescope, and others, to look at the way that bright, distant are gathered together in groups or clusters.

The more closely the galaxies are clustered, the more massive are their halos of dark matter — the invisible material that makes up the vast majority of a galaxy's mass. The new results are the most accurate clustering measurements ever made for this type of galaxy.

The galaxies are so distant that their light has taken around ten billion years to reach us, so we see them as they were about ten billion years ago. In these snapshots from the , the galaxies are undergoing the most intense type of activity known, called a starburst.

By measuring the masses of the dark matter halos around the galaxies, and using computer simulations to study how these halos grow over time, the found that these distant starburst galaxies from the early cosmos eventually become giant elliptical galaxies — the most massive galaxies in today's Universe.

This video is not supported by your browser at this time.
Credit: ESO, APEX (MPIfR/ESO/OSO)

"This is the first time that we've been able to show this clear link between the most energetic starbursting galaxies in the early Universe, and the most in the present day," explains Ryan Hickox (Dartmouth College, USA and Durham University, UK), the lead scientist of the team.

Furthermore, the new observations indicate that the bright starbursts in these distant galaxies last for a mere 100 million years — a very short time in cosmological terms — yet in this brief time they are able to double the quantity of stars in the galaxies. The sudden end to this rapid growth is another episode in the history of galaxies that astronomers do not yet fully understand.

"We know that massive elliptical galaxies stopped producing stars rather suddenly a long time ago, and are now passive. And scientists are wondering what could possibly be powerful enough to shut down an entire galaxy's starburst," says Julie Wardlow (University of California at Irvine, USA and Durham University, UK), a member of the team.

The team's results provide a possible explanation: at that stage in the history of the cosmos, the starburst galaxies are clustered in a very similar way to quasars, indicating that they are found in the same halos. Quasars are among the most energetic objects in the Universe — galactic beacons that emit intense radiation, powered by a supermassive black hole at their centre.

There is mounting evidence to suggest the intense starburst also powers the quasar by feeding enormous quantities of material into the black hole. The quasar in turn emits powerful bursts of energy that are believed to blow away the galaxy's remaining gas — the raw material for — and this effectively shuts down the star formation phase.

"In short, the galaxies' glory days of intense star formation also doom them by feeding the giant black hole at their centre, which then rapidly blows away or destroys the star-forming clouds," explains David Alexander (Durham University, UK), a member of the team.

Explore further: Comet Jacques makes a 'questionable' appearance

More information: This research is presented in a paper to appear in the journal Monthly Notices of the Royal Astronomical Society on 26 January 2012.

Related Stories

Baby booms and birth control in space

Sep 25, 2007

Stars in galaxies are a bit similar to people: during the first phase of their existence they grow rapidly, after which a stellar birth control occurs in most galaxies. Thanks to new observations from Dutch ...

What activates a supermassive black hole?

Jul 13, 2011

A new study combining data from ESO's Very Large Telescope and ESA's XMM-Newton X-ray space observatory has turned up a surprise. Most of the huge black holes in the centres of galaxies in the past 11 billion ...

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

ALMA early science result reveals starving galaxies

Jan 11, 2012

(PhysOrg.com) -- Astronomers using the partially completed ALMA observatory have found compelling evidence for how star-forming galaxies evolve into 'red and dead' elliptical galaxies, catching a large group ...

Recommended for you

Comet Jacques makes a 'questionable' appearance

4 hours ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

4 hours ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (2) Jan 25, 2012
This is so easy! They have it backwards: It is more likely to be the quasar ejecting new matter into the surrounding galaxy that powers the intense starburst. Once the quasar rapidly grows too large and extremely active, the star formation is likely slowed, as the central galactic region is simply too unstable. We already know that stars in our own galaxy are moving radially toward the galactic anti-center.

And yes, giant ellipticals are the final phase of galactic evolution in LaViolette's Continuous Creation model.

And dark matter halo's are likely the pre-nucleation etheric stability condition, where matter is more likely to form spontaneously. This etheric state is augmented by nearby matter, thereby forming galactic halos. This state also refracts light, forming Einstein rings.
Shootist
not rated yet Jan 25, 2012
Olivaar, is that you?

Sir Fred would appreciate your shilling for his cosmology. At least until the aether part.