Unique E. coli protein may be not after all

January 3, 2012

A bacterial protein recently thought to be a unique mechanism for utilizing iron may not be after all. Researchers from the University of Georgia, the Fellowship for Interpretation of Genomes, the University of Oklahoma and the University of Utah School of Medicine report their findings in the latest issue of the online journal mBio.

The ability to acquire iron from their host is an important factor in the ability of bacteria to establish an infection. The major source of host iron in infections is heme, a component of and disease-causing bacteria have evolved complex mechanisms to acquire the heme and extract the iron. In the case of E. coli bacteria recent research has reported that the YfeX is able to remove iron from heme using a process called dechelation and leave an intact tetrapyrrole. This is totally unlike any other described for iron removal from heme and, thus, would represent a dramatically new feature with potentially for understanding how bacteria cause disease.

Based on the responsible for its production, this compound appears to be a dye-decolorizing peroxidase (DyP), a relatively recently recognized superfamily of heme-containing peroxidases that are found in fungi and bacteria.

"Given the diversity of organisms that possess DyP-type proteins, the identification of this class of proteins as heme dechelatases would have profound physiological and . Because of this and our interest in heme metabolism, we undertook to examine in more detail the protein YfeX," write the researchers.

In the study, they propose and demonstrate that YfeX is a typical DyP with no ability to dechelate iron from heme.

"The data presented herein demonstrate that recombinant YfeX is a typical DyP-type peroxidase and does not possess the catalytic ability to dechelate iron from heme in vitro," write the researchers. "In vivo experiments with YfeX in E. coli and its homolog in Vibrio fischeri revealed no evidence that YfeX either is involved in iron acquisition from heme or generates prophyrin from exogenously supplied heme."

Explore further: Scientists characterize protein structure of environmentally friendly bacteria

More information: http://mbio.asm.org/content/2/6/e00248-11

Related Stories

Heme channel found

December 17, 2009

In some ways a cell in your body or an organelle in that cell is like an ancient walled town. Life inside either depends critically on the intelligence of the gatekeepers.

Another iron in the fire

April 19, 2011

A tiny protein has been identified by University of California researchers as a possible alternate route for tuberculosis to spread in the human body – which could lead to better treatments for one of the world’s ...

Researchers show how iron activates oxygen in living things

November 18, 2011

Oxygen performs many key functions in the body’s internal chemistry, but the life-sustaining molecule can’t do its job alone. Now, SLAC researchers and their collaborators are learning more about how iron-containing ...

Recommended for you

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.