Unique E. coli protein may be not after all

Jan 03, 2012

A bacterial protein recently thought to be a unique mechanism for utilizing iron may not be after all. Researchers from the University of Georgia, the Fellowship for Interpretation of Genomes, the University of Oklahoma and the University of Utah School of Medicine report their findings in the latest issue of the online journal mBio.

The ability to acquire iron from their host is an important factor in the ability of bacteria to establish an infection. The major source of host iron in infections is heme, a component of and disease-causing bacteria have evolved complex mechanisms to acquire the heme and extract the iron. In the case of E. coli bacteria recent research has reported that the YfeX is able to remove iron from heme using a process called dechelation and leave an intact tetrapyrrole. This is totally unlike any other described for iron removal from heme and, thus, would represent a dramatically new feature with potentially for understanding how bacteria cause disease.

Based on the responsible for its production, this compound appears to be a dye-decolorizing peroxidase (DyP), a relatively recently recognized superfamily of heme-containing peroxidases that are found in fungi and bacteria.

"Given the diversity of organisms that possess DyP-type proteins, the identification of this class of proteins as heme dechelatases would have profound physiological and . Because of this and our interest in heme metabolism, we undertook to examine in more detail the protein YfeX," write the researchers.

In the study, they propose and demonstrate that YfeX is a typical DyP with no ability to dechelate iron from heme.

"The data presented herein demonstrate that recombinant YfeX is a typical DyP-type peroxidase and does not possess the catalytic ability to dechelate iron from heme in vitro," write the researchers. "In vivo experiments with YfeX in E. coli and its homolog in Vibrio fischeri revealed no evidence that YfeX either is involved in iron acquisition from heme or generates prophyrin from exogenously supplied heme."

Explore further: How do our muscles work? Scientists reveal important new insights into muscle protein

More information: http://mbio.asm.org/content/2/6/e00248-11

Provided by American Society for Microbiology

2.5 /5 (8 votes)
add to favorites email to friend print save as pdf

Related Stories

Heme channel found

Dec 17, 2009

In some ways a cell in your body or an organelle in that cell is like an ancient walled town. Life inside either depends critically on the intelligence of the gatekeepers.

Another iron in the fire

Apr 19, 2011

A tiny protein has been identified by University of California researchers as a possible alternate route for tuberculosis to spread in the human body – which could lead to better treatments for one of ...

Recommended for you

How calcium regulates mitochondrial carrier proteins

13 hours ago

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

14 hours ago

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.