Tracking genes' remote controls

Jan 09, 2012
Chemical tags called chromatin modifications (green flags) activate enhancers (yellow), which act as remote controls, turning a gene (red) on or off. Credit: EMBL/P. Riedinger

As an embryo develops, different genes are turned on in different cells, to form muscles, neurons and other bodily parts. Inside each cell's nucleus, genetic sequences known as enhancers act like remote controls, switching genes on and off. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, can now see – and predict – exactly when each remote control is itself activated, in a real embryo. Their work is published today in Nature Genetics.

Stefan Bonn, Robert Zinzen and Charles Girardot, all in Eileen Furlong's lab at EMBL, found that specific combinations of chromatin modifications – chemical tags that promote or hinder gene expression – are placed at and removed from enhancers at precise times during development, switching those remote controls on or off.

"Our new method provides cell-type specific information on the activity status of an enhancer and of a gene, within a developing multicellular embryo," says Furlong.

The scientists looked at known enhancers, and compared those that were active to those that were inactive in a type of cells called mesoderm at a particular time in fruit fly development. They noted what chromatin modifications each of those enhancers had, and trained a computer model to accurately predict if an enhancer is active or inactive, based solely on what chromatin marks it bears.

In future, the scientists plan to use this method to study the interplay between the activity status of an enhancer and the presence of key switches, termed transcription factors, at different stages of embryonic development, and in different tissue types, generating an ever more complete picture of how a single cell grows into a complex organism.

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

add to favorites email to friend print save as pdf

Related Stories

Live from the scene: Biochemistry in action

Aug 08, 2011

Researchers can now watch molecules move in living cells, literally millisecond by millisecond, thanks to a new microscope developed by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, ...

Recommended for you

Japanese scientist resigns over stem cell scandal

19 hours ago

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.