Team models ionic conductivity in doped ceria for use as a fuel cell electrolyte

Jan 12, 2012 By Renu Sharma

(PhysOrg.com) -- Optimizing the conductivity of ceria based oxides, or doped ceria, is crucial to their use as electrolytes in future solid oxide fuel cells.

Researchers from the NIST Center for and Technology and Arizona State University have successfully used kinetic lattice to predict the optimum dopant concentration for maximizing for gadolinium doped ceria(1), and for double-doped (praseodymium and gadolinium) ceria(2), at temperatures (773 K to 1073 K) that are practical for fuel cell operation. 

Compared with the that are commonly used in , doped ceria has higher conductivity and therefore higher efficiency.  It also operates at lower temperatures, which may reduce the overall material costs for the fuel cells. 

The researchers used their previously published Monte Carlo model to calculate activation energies using density functional theory that includes electron interactions (DFT + U) in order to study time-dependent vacancy diffusion. 

Their results showed that ionic conductivity is maximized between 0.2 mole fraction and 0.25 mole fraction for gadolinium and decreases slightly for higher concentrations.  For the same doping concentrations, double-doped ceria had higher ionic conductivity than single-doped, with gadolinium-rich double-doped ceria having the highest conductivity. 

The models explain the performance difference between double and single doping by showing that in the double-doped ceria, vacancy diffusion follows low energy migration paths. 

The researchers’ calculations agree with available experimental data, indicating that their model can be used to predict the behavior of other lanthanide co-dopants in ceria-based oxides. 

Explore further: Negative electronic compressibility: More is less in novel material

More information: (1)Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach, P. P. Dholabhai, et al., Modelling and Simulation in Materials Science and Engineering 20, 015004 (2011). iopscience.iop.org/0965-0393/20/1/015004

(2)In search of enhanced electrolyte materials: a case study of doubly doped ceria, P. P. Dholabhai, et al., Journal of Materials Chemistry 21, 18991-18997 (2011). pubs.rsc.org/en/Content/ArticleLanding/2011/JM/c1jm14417k

Related Stories

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.