Team models ionic conductivity in doped ceria for use as a fuel cell electrolyte

January 12, 2012 By Renu Sharma

( -- Optimizing the conductivity of ceria based oxides, or doped ceria, is crucial to their use as electrolytes in future solid oxide fuel cells.

Researchers from the NIST Center for and Technology and Arizona State University have successfully used kinetic lattice to predict the optimum dopant concentration for maximizing for gadolinium doped ceria(1), and for double-doped (praseodymium and gadolinium) ceria(2), at temperatures (773 K to 1073 K) that are practical for fuel cell operation. 

Compared with the that are commonly used in , doped ceria has higher conductivity and therefore higher efficiency.  It also operates at lower temperatures, which may reduce the overall material costs for the fuel cells. 

The researchers used their previously published Monte Carlo model to calculate activation energies using density functional theory that includes electron interactions (DFT + U) in order to study time-dependent vacancy diffusion. 

Their results showed that ionic conductivity is maximized between 0.2 mole fraction and 0.25 mole fraction for gadolinium and decreases slightly for higher concentrations.  For the same doping concentrations, double-doped ceria had higher ionic conductivity than single-doped, with gadolinium-rich double-doped ceria having the highest conductivity. 

The models explain the performance difference between double and single doping by showing that in the double-doped ceria, vacancy diffusion follows low energy migration paths. 

The researchers’ calculations agree with available experimental data, indicating that their model can be used to predict the behavior of other lanthanide co-dopants in ceria-based oxides. 

Explore further: Mixed conductor ceria proven as excellent catalyst for fuel cell anodes

More information: (1)Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach, P. P. Dholabhai, et al., Modelling and Simulation in Materials Science and Engineering 20, 015004 (2011).

(2)In search of enhanced electrolyte materials: a case study of doubly doped ceria, P. P. Dholabhai, et al., Journal of Materials Chemistry 21, 18991-18997 (2011).

Related Stories

Success in developing groundbreaking electrolyte materials

November 24, 2010

The Fuel Cell Nano-Materials Group at the Japanese National Institute for Materials Science has successfully developed two types of novel materials which satisfy all the three requirements for electrolyte: ion conductivity, ...

Recommended for you

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

Professor solves 140-year fluid mechanics enigma

October 7, 2015

A Purdue University researcher has solved a 140-year-old enigma in fluid mechanics: Why does a simple formula describe the seemingly complex physics for the behavior of elliptical particles moving through fluid?

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.