SRNL research paves way for portable power systems

Jan 09, 2012
Dr. Kit Heung of Savannah River National Laboratory demonstrates a system incorporating a fuel cell and light-weight hydrogen storage material. SRNL's advances in the use of alane, a lightweight material for storing hydrogen, are paving the way for the successful development of portable power systems with capacities that far exceed the best batteries available today. Credit: Savannah River National Laboratory

Developments by hydrogen researchers at the Savannah River National Laboratory (SRNL) are paving the way for the successful development of portable power systems with capacities that far exceed the best batteries available today. SRNL's advances in the use of alane, a lightweight material for storing hydrogen, may be the key that unlocks the development of portable fuel cell systems that meet the needs for both military and commercial portable power applications.

SRNL has demonstrated a practical path to portable power systems based on alane and similar high capacity that provide the sought-after high specific energy, which means the amount of energy per weight. Their accomplishments to date include developing a lower-cost method of producing alane, developing a method to dramatically increase the amount of hydrogen it releases, and demonstrating a working system powering a 150 W fuel cell. Portable power equipment manufacturers are looking for systems that can provide specific energies greater than 1000 watt-hours per kilogram (Wh/kg); that's more than 2 to 3 times the capacity of the best primary today. "Higher specific energy means more energy per weight," said SRNL's Dr. Ted Motyka. "The goal is to provide sufficient energy to a system that is light enough to be carried by a or used in and other applications where weight is a factor."

Hydrogen, at 33,000 Wh/kg, has the highest specific energy of any fuel, so it is a natural candidate to fuel such high-capacity systems. The challenge, however, has been developing a material for storing hydrogen with both the high capacity and the low weight needed for portable systems.

SRNL has been working for years on developing several light-weight, high capacity solid-state hydrogen storage materials for automotive applications. While most of these materials do not meet all the various requirements needed for automotive applications, many may be viable for small portable power systems.

One of the most promising materials is aluminum hydride, (AlH3) or alane. Alane, while not a new material, has only in the last few years been considered as a hydrogen storage material for fuel cell applications. SRNL researchers are among only a handful of researchers, worldwide, currently working with alane and beginning to unwrap its material and engineering properties.

Dr. Motyka, Dr. Ragaiy Zidan and Dr. Kit Heung, all of SRNL, led a team to characterize and optimize alane as a hydrogen storage material, develop a small hydrogen storage vessel containing alane, and demonstrate hydrogen release at delivery rates suitable for powering small commercial fuel cells. The results of that work are attracting interest from several commercial companies working in the area of portable power systems.

Alane is one of the classes of materials known as chemical hydrogen storage materials. Like metal hydrides, chemical hydrogen storage materials provide a solid-state storage medium for hydrogen. Unlike metal hydrides, however, chemical materials, like alane, do not readily reabsorb hydrogen, so once their hydrogen is released the material must be chemically reprocessed to restore its hydrogen. An advantage of alane is its very high hydrogen capacities; it can store twice as much hydrogen, in the same volume, as liquid hydrogen, and can do so at the very high gravimetric capacity of 10 wt%. Alane also exhibits very favorable discharge conditions, making it one of the ideal chemical .

Among the biggest challenges the team addressed were the limited amount of readily available commercial alane, and its high cost to produce – which could be significant impediments to widespread use. As part of this project, they initially developed a bench-scale system to produce the quantities of alane needed for experimental and optimization studies. This work led to the development of a new and potentially lower cost process for producing alane. "Our process overcomes some of the handicaps of traditional methods for producing alane," says Dr. Zidan. "This novel method minimizes the use of solvents, and is able to produce pure, halide-free alane."

Work led by Dr. Zidan also resulted in a process to increase the amount of hydrogen that can be extracted from alane. This two-step process was found to double the amount of hydrogen that can be liberated from alane using a traditional one-step process.

A major part of this project was to evaluate alane systems for compatibility with small fuel cell applications. Preliminary results on a proof-of-concept vessel containing approximately 22 grams of alane showed that the system could scale nicely to meet the required hydrogen release rate for a small 100-watt fuel cell system. Based on those results a larger system containing 240 grams of alane was designed, fabricated and tested with a 150 watt commercial fuel cell. The results show that the system was able to operate the at near full power for over three hours and at reduced power for several more hours.

Explore further: Chemists develop new formulation for the generation of green flames

Provided by Savannah River National Laboratory

4.4 /5 (5 votes)

Related Stories

Chemists develop liquid-based hydrogen storage material

Nov 22, 2011

University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable -- an accomplishment ...

Hydrogen storage in nanoparticles works

Mar 31, 2008

Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles ...

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 10, 2012
and at reduced power for several more hours.

Take a fuel cell with an efficiency of 0.6 and 150 Watts of power out. That means 250 Watts of hydrogen in, for three hours, which equals 750 Wh from 240 grams of material that is supposed to have a theoretical maximum specific energy of 3300 Wh/kg, or 792 Wh of energy available.

With 42 Wh left, and roughly 25 Wh available as output, they're reduced from 150 to around 3-4 Watts of output if they want it to run for "several more hours".

I'd have left that bit unmentioned, but I suppose it's still useful for powering a flashlight or a radio from the empty canister.
not rated yet Jan 10, 2012
It's very interesting for a civilian application though. A quarter of a kilogram of the stuff, probably something the size of a soda can, would power a bicycle for three hours. That's a 40 mile trip without much effort on your part.