Smooth muscle cells created from patients' skin cells

Jan 17, 2012
Smooth muscle cells. Credit: Dr Sanjay Sinha

(PhysOrg.com) -- Scientists have created cells which make up the walls of blood vessels; research could lead to new treatments and better screening for cardiovascular disease.

Cambridge scientists have for the first time created different types of vascular (SMCs) – the cells which make up the walls of blood vessels – using cells from patients’ skin.  Their research, which was partly funded by the Wellcome Trust, is published yesterday, 15 January, in the journal Nature Biotechnology.

In the UK, one in three of all deaths is due to . The vast majority of these are caused by atherosclerosis, a ‘furring up’ and blockage of blood vessels. For patients who are unsuitable for conventional stenting or bypass treatment, one option in the future may be to grow new blood vessels to bypass their own blocked vessels.

Lead author of the research, Dr Sanjay Sinha, Wellcome Trust Intermediate Clinical Fellow at the University of Cambridge said: “This research represents an important step in being able to generate the right kind of smooth to help construct these new blood vessels. Other patients who may benefit from new include those with renal failure, who need vascular grafts for dialysis.”

For the research, the scientists used embryonic stem cells,  (or similar cells derived from a patient’s skin sample) which have the potential to form any cell type in the body, known as human pluripotent stem cells (hPSCs).  Using hPSCs, they discovered a method for creating high purity .  Although blood and cardiac cells from hPSCs have been created before, this is the first time that all the major types of vascular smooth muscle cells have been developed and done so in a system which would be easy to scale up for clinical-grade production.

Vascular smooth muscle cells originate from different tissues in the early embryo, and the scientists were able to reproduce three distinct types of embryonic tissue in the culture dish.  Interestingly, these SMCs responded differently to vascular disease causing substances, such as growth factors, depending on which embryonic pathway they had come from.  They conclude that differences in embryonic origin may play a part in determining where and when common vascular diseases such as aortic aneurysms or atherosclerosis develop.

Dr Sinha added:  “Using this system, we can begin to understand how SMC origin affects development of vascular disease and why some parts of the vasculature are protected from disease.

“Additionally, there are many patients who have a genetic disorder, such as Marfans Syndrome, that affects their vascular smooth muscle cells and leads to premature death and disability. With this research, and using hPSCs generated from patient skin samples, we will be able to generate cells with the genetic abnormality in a culture dish. This type of ‘disease in a dish’ modelling will allow us to understand the disease better and will allow us to screen for new treatments.”

Explore further: Improving the productivity of tropical potato cultivation

Related Stories

Protein identified that plays role in blood flow

Sep 18, 2008

For years, researchers have known that high blood pressure causes blood vessels to contract and low blood pressure causes blood vessels to relax. Until recently, however, researchers did not have the tools to determine the ...

Heart protein regulates blood vessel maintenance

May 11, 2009

Researchers identify a protein that regulates the physical state of blood vessels. The biochemical processes involved in this regulation are important in the study of cardiovascular health.

Gene directs stem cells to build the heart

Jul 02, 2008

Researchers have shown that they can put mouse embryonic stem cells to work building the heart, potentially moving medical science a significant step closer to a new generation of heart disease treatments that use human stem ...

Recommended for you

Building better soybeans for a hot, dry, hungry world

10 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

10 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.