Smooth muscle cells created from patients' skin cells

January 17, 2012
Smooth muscle cells. Credit: Dr Sanjay Sinha

(PhysOrg.com) -- Scientists have created cells which make up the walls of blood vessels; research could lead to new treatments and better screening for cardiovascular disease.

Cambridge scientists have for the first time created different types of vascular (SMCs) – the cells which make up the walls of blood vessels – using cells from patients’ skin.  Their research, which was partly funded by the Wellcome Trust, is published yesterday, 15 January, in the journal Nature Biotechnology.

In the UK, one in three of all deaths is due to . The vast majority of these are caused by atherosclerosis, a ‘furring up’ and blockage of blood vessels. For patients who are unsuitable for conventional stenting or bypass treatment, one option in the future may be to grow new blood vessels to bypass their own blocked vessels.

Lead author of the research, Dr Sanjay Sinha, Wellcome Trust Intermediate Clinical Fellow at the University of Cambridge said: “This research represents an important step in being able to generate the right kind of smooth to help construct these new blood vessels. Other patients who may benefit from new include those with renal failure, who need vascular grafts for dialysis.”

For the research, the scientists used embryonic stem cells,  (or similar cells derived from a patient’s skin sample) which have the potential to form any cell type in the body, known as human pluripotent stem cells (hPSCs).  Using hPSCs, they discovered a method for creating high purity .  Although blood and cardiac cells from hPSCs have been created before, this is the first time that all the major types of vascular smooth muscle cells have been developed and done so in a system which would be easy to scale up for clinical-grade production.

Vascular smooth muscle cells originate from different tissues in the early embryo, and the scientists were able to reproduce three distinct types of embryonic tissue in the culture dish.  Interestingly, these SMCs responded differently to vascular disease causing substances, such as growth factors, depending on which embryonic pathway they had come from.  They conclude that differences in embryonic origin may play a part in determining where and when common vascular diseases such as aortic aneurysms or atherosclerosis develop.

Dr Sinha added:  “Using this system, we can begin to understand how SMC origin affects development of vascular disease and why some parts of the vasculature are protected from disease.

“Additionally, there are many patients who have a genetic disorder, such as Marfans Syndrome, that affects their vascular smooth muscle cells and leads to premature death and disability. With this research, and using hPSCs generated from patient skin samples, we will be able to generate cells with the genetic abnormality in a culture dish. This type of ‘disease in a dish’ modelling will allow us to understand the disease better and will allow us to screen for new treatments.”

Explore further: High Blood Pressure In Older Adults Traced To Gene's Effects In Blood Vessels

Related Stories

Gene directs stem cells to build the heart

July 2, 2008

Researchers have shown that they can put mouse embryonic stem cells to work building the heart, potentially moving medical science a significant step closer to a new generation of heart disease treatments that use human stem ...

Protein identified that plays role in blood flow

September 18, 2008

For years, researchers have known that high blood pressure causes blood vessels to contract and low blood pressure causes blood vessels to relax. Until recently, however, researchers did not have the tools to determine the ...

Heart protein regulates blood vessel maintenance

May 11, 2009

Researchers identify a protein that regulates the physical state of blood vessels. The biochemical processes involved in this regulation are important in the study of cardiovascular health.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.