How seawater could corrode nuclear fuel

Jan 26, 2012
These spherical clusters are made up of uranium and oxygen atoms. New work shows that in seawater, they can remain stable in solution or as nanoparticles. Credit: Ginger Sigmon, University of Notre Dame

Japan used seawater to cool nuclear fuel at the stricken Fukushima-Daiichi nuclear plant after the tsunami in March 2011 -- and that was probably the best action to take at the time, says Professor Alexandra Navrotsky of the University of California, Davis.

But Navrotsky and others have since discovered a new way in which seawater can corrode nuclear fuel, forming uranium compounds that could potentially travel long distances, either in solution or as very small particles. The research team published its work Jan. 23 in the journal .

"This is a phenomenon that has not been considered before," said Alexandra Navrotsky, distinguished professor of ceramic, earth and environmental . "We don't know how much this will increase the rate of corrosion, but it is something that will have to be considered in future."

Japan used seawater to avoid a much more serious accident at the Fukushima-Daiichi plant, and Navrotsky said, to her knowledge, there is no evidence of long-distance from the plant.

Uranium in nuclear fuel rods is in a chemical form that is "pretty insoluble" in water, Navrotsky said, unless the uranium is oxidized to uranium-VI — a process that can be facilitated when radiation converts water into peroxide, a powerful oxidizing agent.

Peter Burns, professor of civil engineering and geological sciences at the University of Notre Dame and a co-author of the new paper, had previously made spherical uranium peroxide clusters, rather like carbon "buckyballs," that can dissolve or exist as solids.

In the new paper, the researchers show that in the presence of alkali metal ions such as sodium — for example, in seawater — these clusters are stable enough to persist in solution or as small particles even when the oxidizing agent is removed.

In other words, these clusters could form on the surface of a fuel rod exposed to and then be transported away, surviving in the environment for months or years before reverting to more common forms of uranium, without peroxide, and settling to the bottom of the ocean. There is no data yet on how fast these uranium peroxide clusters will break down in the environment, Navrotsky said.

Explore further: Smartgels are thicker than water

Provided by University of California - Davis

5 /5 (2 votes)

Related Stories

Plutonium in troubled reactors, spent fuel pools

Mar 18, 2011

(AP) --The fuel rods at all six reactors at the stricken Fukushima Dai-ichi complex contain plutonium - better known as fuel for nuclear weapons. While plutonium is more toxic than uranium, other radioactive ...

Iran tests first domestically made nuclear fuel rod

Jan 01, 2012

Iran said on Sunday that its scientists have "tested the first nuclear fuel rod produced from uranium ore deposits inside the country," the website of the Iranian Atomic Energy Organisation said.

Size matters in crucial redox reactions

Oct 12, 2010

(PhysOrg.com) -- Particle size has a far more dramatic impact on chemical reactivity than previously thought, according to new research from UC Davis. The results have implications for understanding a wide range of vital ...

Calcium carbonate and climate change

Aug 30, 2010

(PhysOrg.com) -- What links sea urchins, limestone and climate change? The common thread is calcium carbonate, one of the most widespread minerals on Earth. UC Davis researchers have now measured the energy changes among ...

Recommended for you

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

neiorah
1 / 5 (1) Jan 27, 2012
SWEET!!!!!!!