Scientists urge balance in the war on antimicrobial resistance

January 5, 2012

Scientists are urging policymakers to reconsider priorities in efforts to understand and control antimicrobial resistance. The new research, published today, was led by Royal Veterinary College Principal Professor Stuart Reid in his previous position at the University of Glasgow.

Antimicrobial resistance is when micro-organisms, including bacteria, viruses and parasites, are no longer killed by the drugs that have previously been effective. In the case of bacteria, there is increasing concern over the spread of resistance and the possibility of returning to the situation 100 years ago when many diseases affecting humans and were untreatable.

in humans is frequently attributed to veterinary use of antimicrobials, but the relative contribution to the problem from animals and humans is poorly understood at the . Despite this, proposals are under consideration by the to phase out the precautionary (or prophylactic) use of some antibiotics in animals in the hope that the rate of increase in the occurrence of antimicrobial resistance would be slowed. The plan has been opposed by the British Veterinary Association, which said that the ban would compromise animal health and welfare.

Dr Alison Mather, working with an interdisciplinary research team within the College of Medical, Veterinary and Life Sciences, exploited long-term of Salmonella Typhimurium DT104 from co-located humans and animals in Scotland, demonstrated how animal and DT104 populations differ significantly in several ways such as prevalence, linkage, time of emergence, and diversity. The findings, published in the , suggest that the local are unlikely to be the major source of resistance in humans, and questions policies that restrict the use of antimicrobials in local .

Professor Daniel Haydon, Director of the University of Glasgow's Institute of Biodiversity Animal Health and Comparative Medicine, said: "In our study, there were significantly more human-only types of resistance than we might have expected if the animal and human microbial communities were well-mixed, suggesting that the risk of resistances passing from animals to humans is lower than previous research has indicated.

"We also found that, in the majority of resistances which are common to both animals and humans, the resistances appeared first in humans. While it's inevitable that contact, direct or indirect, between animals and humans will lead to some transmission of disease and resistance in both directions, it appears unlikely that the animal population is the major source of resistance diversity for humans."

Professor Stuart Reid, the senior author of the work and now Principal at the Royal Veterinary College, London, added: "It remains true that the use of promotes resistance in microorganisms and of course we advocate prudent use in all species but our work does call into question the, at times, singular focus on veterinary usage.

"Whilst our study has focused on a single bacterial species, our findings do demonstrate that we must ensure that our local policies do not impact disproportionately on domestic livestock without considering imported foodstuffs and animals abroad, as well as the medical use of antibiotics. There is still much to be done if we are to understand the problem at the level of the global ecosystem."

The research was carried out by the University of Glasgow, in partnership with the Scottish Salmonella Shigella and Clostridium difficile Reference Laboratory at Stobhill Hospital; Health Protection Scotland; the Public Health Agency of Canada and the University of Guelph in Canada.

Explore further: European league-tables for antibiotic resistance revealed

More information: The report, entitled "An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations", is available from tinyurl.com/dxr7prd

Related Stories

European league-tables for antibiotic resistance revealed

July 8, 2008

Tests of antibiotic resistance in cattle have revealed stark variation across thirteen European countries. The results, published today in BioMed Central’s open-access journal Acta Veterinaria Scandinavica, show that major ...

Antibiotics in swine feed encourage gene exchange

November 28, 2011

A study to be published in the online journal mBio on November 29 shows that adding antibiotics to swine feed causes microorganisms in the guts of these animals to start sharing genes that could spread antibiotic resistance.

Recommended for you

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.