RNA editing responsible for colder water survival in octopus

Jan 06, 2012 by Deborah Braconnier report
Octopus vulgaris. Image: Wikipedia.

(PhysOrg.com) -- Researchers have discovered that when it comes to the survival of an octopus living in frigid waters, the reasoning is not a difference in the gene DNA but rather a difference in the RNA editing.

The new study, led by molecular neurophysiologist Joshua Rosenthal and his graduate student, Sandra Garrett, from the University of Puerto Rico Medical Sciences Campus in San Juan was published in Science.

When it comes to cold temperatures, certain proteins that are responsible for can be hampered. As a nerve cell fires, channels open or close to allow in or out. can delay the channels’ closing and stop the neurons ability to fire.

Rosenthal and Garrett believed that in order for an to survive in the frigid cold waters of the Arctic and Antarctic seas, they would have had to have changes in the DNA sequence.

To test this theory, the researchers compared octopus species from the cold waters of the Antarctic as well as warm water octopus from the Puerto Rican reef. When they examined the potassium channel genes, they discovered almost identical DNA sequences.

They then took the genes and inserted them into frog eggs cells in order to measure the electrical activity of each channel. Again they discovered that both species functioned in the same manner. But if the cold water octopus fired at the same rate as the warm water species, the channel would close 60 times slower so how could the octopus survive?

They realized that RNA editing must be in play. In RNA editing, the cells synthesize an RNA version of the particular DNA with an amended nucleotide sequence which will alter the amino acids and change the proteins function. When the researchers looked at this, they discovered that the Antarctic species edits its RNA in nine different locations to change sequence of amino acids in the potassium channel.

On site, known as I321V, is important for the survival in cold weather as it changes the potassium channel’s closing speed by more than 50 percent. The colder the octopus’ habitat is, the more likely they are to find edits at this location.

This study shows that RNA editing can play a significant role in organism adaptation.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: RNA Editing Underlies Temperature Adaptation in K+ Channels from Polar Octopuses, Science, Published Online January 5 2012. DOI: 10.1126/science.1212795

ABSTRACT
To operate in the extreme cold, ion channels from psychrophiles must have evolved structural changes to compensate for their thermal environment. A reasonable assumption would be that the underlying adaptations lie within the encoding genes. Here, we show that delayed rectifier K+ channel genes from an Antarctic and a tropical octopus encode channels that differ at only four positions and display very similar behavior when expressed in Xenopus oocytes. However, the transcribed mRNAs are extensively edited, creating functional diversity. One editing site, which recodes an isoleucine to a valine in the channel's pore, greatly accelerates gating kinetics by destabilizing the open state. This site is extensively edited in both Antarctic and Arctic species, but mostly unedited in tropical species. Thus, A-to-I RNA editing can respond to the physical environment.

Related Stories

Scientists tap into Antarctic octopus venom

Jul 21, 2010

(PhysOrg.com) -- Researchers have collected venom from octopuses in Antarctica for the first time, significantly advancing our understanding of the properties of venom as a potential resource for drug-development.

New DNA repair pathway

Nov 08, 2010

(PhysOrg.com) -- UC Davis researchers have found a new pathway for repairing DNA damaged by oxygen radicals. The results are published this week in the journal Proceedings of the National Academy of Sciences.

Unraveling the mysteries of poison

Apr 13, 2006

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.