RNA editing responsible for colder water survival in octopus

Jan 06, 2012 by Deborah Braconnier report
Octopus vulgaris. Image: Wikipedia.

(PhysOrg.com) -- Researchers have discovered that when it comes to the survival of an octopus living in frigid waters, the reasoning is not a difference in the gene DNA but rather a difference in the RNA editing.

The new study, led by molecular neurophysiologist Joshua Rosenthal and his graduate student, Sandra Garrett, from the University of Puerto Rico Medical Sciences Campus in San Juan was published in Science.

When it comes to cold temperatures, certain proteins that are responsible for can be hampered. As a nerve cell fires, channels open or close to allow in or out. can delay the channels’ closing and stop the neurons ability to fire.

Rosenthal and Garrett believed that in order for an to survive in the frigid cold waters of the Arctic and Antarctic seas, they would have had to have changes in the DNA sequence.

To test this theory, the researchers compared octopus species from the cold waters of the Antarctic as well as warm water octopus from the Puerto Rican reef. When they examined the potassium channel genes, they discovered almost identical DNA sequences.

They then took the genes and inserted them into frog eggs cells in order to measure the electrical activity of each channel. Again they discovered that both species functioned in the same manner. But if the cold water octopus fired at the same rate as the warm water species, the channel would close 60 times slower so how could the octopus survive?

They realized that RNA editing must be in play. In RNA editing, the cells synthesize an RNA version of the particular DNA with an amended nucleotide sequence which will alter the amino acids and change the proteins function. When the researchers looked at this, they discovered that the Antarctic species edits its RNA in nine different locations to change sequence of amino acids in the potassium channel.

On site, known as I321V, is important for the survival in cold weather as it changes the potassium channel’s closing speed by more than 50 percent. The colder the octopus’ habitat is, the more likely they are to find edits at this location.

This study shows that RNA editing can play a significant role in organism adaptation.

Explore further: Fungus deadly to AIDS patients found to grow on trees

More information: RNA Editing Underlies Temperature Adaptation in K+ Channels from Polar Octopuses, Science, Published Online January 5 2012. DOI: 10.1126/science.1212795

ABSTRACT
To operate in the extreme cold, ion channels from psychrophiles must have evolved structural changes to compensate for their thermal environment. A reasonable assumption would be that the underlying adaptations lie within the encoding genes. Here, we show that delayed rectifier K+ channel genes from an Antarctic and a tropical octopus encode channels that differ at only four positions and display very similar behavior when expressed in Xenopus oocytes. However, the transcribed mRNAs are extensively edited, creating functional diversity. One editing site, which recodes an isoleucine to a valine in the channel's pore, greatly accelerates gating kinetics by destabilizing the open state. This site is extensively edited in both Antarctic and Arctic species, but mostly unedited in tropical species. Thus, A-to-I RNA editing can respond to the physical environment.

Related Stories

Scientists tap into Antarctic octopus venom

Jul 21, 2010

(PhysOrg.com) -- Researchers have collected venom from octopuses in Antarctica for the first time, significantly advancing our understanding of the properties of venom as a potential resource for drug-development.

New DNA repair pathway

Nov 08, 2010

(PhysOrg.com) -- UC Davis researchers have found a new pathway for repairing DNA damaged by oxygen radicals. The results are published this week in the journal Proceedings of the National Academy of Sciences.

Unraveling the mysteries of poison

Apr 13, 2006

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover ...

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

User comments : 0