Rap music powers rhythmic action of medical sensor

Jan 26, 2012 by Emil Venere
This graphic illustrates the principles behind the operation of a new type of miniature medical sensor powered by acoustic waves, including those found in music such as rap, blues, jazz and rock. The device, a pressure sensor, might ultimately help to treat people stricken with aneurisms or incontinence due to paralysis. Credit: Birck Nanotechnology Center, Purdue University

(PhysOrg.com) -- The driving bass rhythm of rap music can be harnessed to power a new type of miniature medical sensor designed to be implanted in the body.

Acoustic waves from music, particularly rap, were found to effectively recharge the . Such a device might ultimately help to treat people stricken with aneurisms or incontinence due to paralysis.

The heart of the sensor is a vibrating cantilever, a thin beam attached at one end like a miniature diving board. Music within a certain range of frequencies, from 200-500 hertz, causes the cantilever to vibrate, and storing a charge in a capacitor, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

"The music reaches the correct frequency only at certain times, for example, when there is a strong bass component," he said. "The from the music can pass through , causing the cantilever to vibrate."

When the frequency falls outside of the proper range, the cantilever stops vibrating, automatically sending the to the sensor, which takes a pressure reading and transmits data as . Because the frequency is continually changing according to the rhythm of a musical composition, the sensor can be induced to repeatedly alternate intervals of storing charge and transmitting data.

"You would only need to do this for a couple of minutes every hour or so to monitor either blood pressure or pressure of urine in the bladder," Ziaie said. "It doesn't take long to do the measurement."

Researchers have created a new type of miniature pressure sensor, shown here, designed to be implanted in the body. Acoustic waves from music or plain tones drive a vibrating device called a cantilever, generating a charge to power the sensor. Credit: Birck Nanotechnology Center, Purdue University

Findings are detailed in a paper to be presented during the IEEE MEMS conference, which will be Jan. 29 to Feb. 2 in Paris. The paper was written by doctoral student Albert Kim, research scientist Teimour Maleki and Ziaie.

"This paper demonstrates the feasibility of the concept," he said.

The device is an example of a , or MEMS, and was created in the Birck Nanotechnology Center at the university's Discovery Park. The cantilever beam is made from a ceramic material called lead zirconate titanate, or PZT, which is piezoelectric, meaning it generates electricity when compressed. The sensor is about 2 centimeters long. Researchers tested the device in a water-filled balloon.

A receiver that picks up the data from the sensor could be placed several inches from the patient. Playing tones within a certain frequency range also can be used instead of music.

"But a plain tone is a very annoying sound," Ziaie said. "We thought it would be novel and also more aesthetically pleasing to use music."

Researchers experimented with four types of music: rap, blues, jazz and rock.

"Rap is the best because it contains a lot of low frequency sound, notably the bass," Ziaie said.

The sensor is capable of monitoring pressure in the urinary bladder and in the sack of a blood vessel damaged by an aneurism. Such a technology could be used in a system for treating incontinence in people with paralysis by checking bladder pressure and stimulating the spinal cord to close the sphincter that controls urine flow from the bladder. More immediately, it could be used to diagnose incontinence. The conventional diagnostic method now is to insert a probe with a catheter, which must be in place for several hours while the patient remains at the hospital.

"A wireless implantable device could be inserted and left in place, allowing the patient to go home while the pressure is monitored," Ziaie said.

The new technology offers potential benefits over conventional implantable devices, which either use batteries or receive power through a property called inductance, which uses coils on the device and an external transmitter. Both approaches have downsides. Batteries have to be replaced periodically, and data are difficult to retrieve from devices that use inductance; coils on the implanted device and an external receiver must be lined up precisely, and they can only be about a centimeter apart.

Explore further: Firm combines 3-D printing with ancient foundry method

More information: A Novel Electromechanical Interrogation Scheme for Implantable Passive Transponders, by A. Kim, T. Maleki, and B. Ziaie

This paper presents design, fabrication and implementation of a novel electromechanical energy scavenging and wireless interrogation scheme using low-frequency components of musical vibrations to overcome challenges associated with previously reported passive transponders such as: short transmission range, misalignment sensitivity and complicated receiver circuitry. The transponder has two phases of operation: 1) mechanical vibration phase, in which an acoustic receiver (a piezoelectric cantilever) converts the sound vibration into electrical power and charges a capacitor; and 2) electrical radiation phase, in which the stored charge is dumped into an LC tank, forcing it to oscillate at its natural resonance frequency and emitting the energy to an outside receiver. In a pressure-sensing configuration, the distance between a planar coil and a ferrite core is modulated by the pressure, thus changing the inductance and, in turn, inducing a change in the frequency of the emitted signal. A prototype transponder was built and tested using a PZT cantilever with a mechanical resonant frequency of 435 Hz encapsulated in a glass capsule (length=40 mm, diameter=8 mm) along with a rectifier circuitry and a storage capacitor. The inductive pressure sensor located outside the capsule had a sensitivity of 2.5k Hz/kPa. We were able to easily pick up the transmitted RF pulses at distances of up to 7 cm without the tight requirement on alignment between the receiver and the transponder coils.

add to favorites email to friend print save as pdf

Related Stories

Sensor in artery measures blood pressure

Jan 05, 2009

(PhysOrg.com) -- High blood pressure can be a trial of patience for doctors and for sufferers, whose blood pressure often has to be monitored over a long time until it can be regulated. This will now be made ...

'Ferropaper' is new technology for small motors, robots

Jan 05, 2010

(PhysOrg.com) -- Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature ...

Recommended for you

Firm combines 3-D printing with ancient foundry method

20 hours ago

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Wearable device helps vision-impaired avoid collision

Mar 26, 2015

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Jan 27, 2012
Great, I can just see my doctor prescribing 4 hours of rap music every day, I'd rather kill myself.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.