'Proplyd-like' objects discovered in Cygnus OB2

Jan 16, 2012 By Jon Voisey, Universe Today
Hubble image of a Proplyd-like object in Cygnus OB2. Credit: Z. Levay and L. Frattare, STScI

The well known Orion Nebula is perhaps the most well known star forming regions in the sky. The four massive stars known as the trapezium illuminate the massive cloud of gas and dust busily forming into new stars providing astronomers a stunning vista to explore stellar formation and young systems. In the region are numerous “protoplanetary disks” or proplyds for short which are regions of dense gas around a newly formed star. Such disks are common around young stars and have recently been discovered in an even more massive, but less well known star forming region within our own galaxy: Cygnus OB2.

Ten times more massive than its more famous counterpart in Orion, Cygnus OB2 is a star forming region that is a portion of a larger collection of gas known as Cygnus X. The OB2 region is notable because, like the Orion , it contains several exceptionally including OB2-12 which is one of the most massive and luminous stars within our own galaxy. In total the region has more than 65 O class stars, the most massive category in astronomers classification system. Yet for as bright as these stars are, Cygnus OB2 is not a popular target for amateur astronomers due to its position behind a dark obscuring cloud which blocks the majority of visible light.

But like many objects obscured in this manner, infrared and radio telescopes have been used to pierce the veil and study the region. The new study, led by Nicholas Wright at the Harvard-Smithsonian Center for Astrophysics, combines infrared and visual observations from the Hubble Space telescope. The observations revealed 10 objects similar in appearance to the Orion proplyds. The objects had long tails being blown away from the central mass due to the strong stellar winds from the central cluster similar to how proplyds in Orion point away from the trapezium. On the closer end, the objects were brightly ionized.

Yet despite the similarities, the objects may not be true proplyds. Instead, they may be regions known as “evaporating gaseous globules” or EGGs for short. The key difference between the two is whether or not a star has formed. EGGs are overdense regions within a larger nebula. Their size and density makes them resistant to the ionization and stripping that blows away the rest of the nebula. Because the interior regions are shielded from these dispersive forces, the center may collapse to form a star which is the requirement for a proplyd. So which are these?

In general, the newly discovered objects are far larger than those typically found in Orion. While Orion proplyds are nearly symmetric across an axis directed towards the central cluster, the OB2 objects have twisted tails with complex shapes. The objects are 18-113 thousand AU (1 AU = the distance between the Earth and Sun = 93 million miles = 150 million km) across making them significantly larger than the Orion proplyds and even larger than the largest known proplyds in NGC 6303.

Yet as different as they are, the current theoretical understanding of how proplyds work doesn’t put them beyond the plausible range. In particular, the size for a true proplyd is limited by how much stripping it feels from the central stars. Since these objects are further away from OB2-12 and the other massive stars than the Orion proplyds are from the trapezium, they should feel less dispersive forces and should be able to grow as large as is seen. Attempting to pierce the thick dust the objects contain and discover if central stars were present, the team examined the objects in the infrared and radio. Of the ten objects, seven had strong candidates central stellar sources.

Still, the stark differences make conclusively identifying the objects as either EGGs or proplyds difficult. Instead, the authors suggest that these objects may be the first discovery of an inbetween stage: old, highly evolved EGGs which have nearly formed making them more akin to young proplyds. If further evidence supports this, this finding would help fill in the scant observational details surrounding stellar formation. This would allow astronomers to more thoroughly test theories which are also tied to the understanding of how planetary systems form.

Explore further: Continents may be a key feature of Super-Earths

add to favorites email to friend print save as pdf

Related Stories

Born in beauty: Proplyds in the Orion Nebula (w/ Video)

Dec 14, 2009

(PhysOrg.com) -- A collection of 30 never-before-released images of embryonic planetary systems in the Orion Nebula are the highlight of the longest single Hubble Space Telescope project ever dedicated to ...

Spitzer Reveals New Wonders in the Familiar Orion Nebula

Aug 15, 2006

The Orion nebula is one of the most famous and easily viewed deep-sky sights. Located in the sword of Orion the Hunter, this distant cloud of gas and dust holds hundreds of young stars. At its center, a cluster ...

An X-Ray Santa Claus in Orion

Nov 30, 2007

Right in time for the festive season, ESA's XMM-Newton X-ray observatory has discovered a huge cloud of high-temperature gas resting in a spectacular nearby star-forming region, shaped somewhat like the silhouette ...

Turbulence May Promote the Birth of Massive Stars

Feb 23, 2009

(PhysOrg.com) -- On long, dark winter nights, the constellation of Orion the Hunter dominates the sky. Within the Hunter's sword, the Orion Nebula swaddles a cluster of newborn stars called the Trapezium. These stars are ...

Before they were stars: New image shows space nursery

Jan 10, 2012

(PhysOrg.com) -- The stars we see today weren't always as serene as they appear, floating alone in the dark of night. Most stars, likely including our sun, grew up in cosmic turmoil — as illustrated in ...

Recommended for you

Continents may be a key feature of Super-Earths

just added

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

3 hours ago

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

A sharp eye on Southern binary stars

23 hours ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

User comments : 0

More news stories

LADEE mission ends with planned lunar impact

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...

Ceres and Vesta Converge in Virgo

Don't let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they'll easily ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

Vietnam battles fatal measles outbreak

Vietnam is scrambling to contain a deadly outbreak of measles that has killed more than 100 people, mostly young children, and infected thousands more this year, the government said Friday.