Polar growth at the bacterial scale reveals potential new targets for antibiotic therapy

Jan 17, 2012
Outer membrane proteins of an Agrobacterium tumefaciens cell were labeled in red, with images taken every 50 minutes as the cell grew. In panels three and four it is clear that the cell on the left (red) has kept all the labeled proteins, whereas the other cell has all new surface proteins. Image by Pamela J.B. Brown, Indiana University.

(PhysOrg.com) -- An international team of microbiologists led by Indiana University researchers has identified a new bacterial growth process -- one that occurs at a single end or pole of the cell instead of uniform, dispersed growth along the long axis of the cell -- that could have implications in the development of new antibacterial strategies.

Based on past detailed studies of rod-shaped bacteria such as Escherichia coli and , it has been assumed that most bacteria grow by binary fission, a dispersed mode of growth involving insertion of new cell wall material uniformly along the long axis of the cell. Growth requires breaking the cell wall at numerous places along the cylinder to allow insertion of new cell wall material, enabling uniform elongation of the cell, with the process culminated by cleavage at the mid-point of the cell to create two symmetric new cells.

The new research published today, Jan. 17, in reports on the surprising discovery that cell growth in a large group of rod-shaped bacteria occurs by insertion of new cell wall material only at a single end, or pole, of the cell rather than by the dispersed mode of growth. The cell wall of the progenitor cell remains largely intact, and all of the new cell wall material is partitioned into the new cell.

Polar growth of four -- the plant symbiont Sinorhizobium meliloti, the plant pathogen and the Brucella abortus and Ochrobactrum anthropi -- was observed using time-lapse microscopy and . The four related bacteria used in the study are all members of a large and diverse class of bacteria called the Alphaproteobacteria. The results reported suggest that polar growth is broadly distributed among many different bacterial taxa, including groups outside the Alphaproteobacteria.

There could be a number of reasons why polar growth emerged and has remained conserved and persistent in bacteria, the researchers believe. The process may act as an aid in anchoring damaged material to only the aging mother cell; it could serve as a tool for conservation of energy by constraining growth to a single region of the cell; and ensuring that newborn cells are composed of newly synthesized outer membrane proteins may help pathogens avoid detection by host immune systems.

"As a consequence of polar growth, the two bacterial cells are actually markedly different," said lead author Yves Brun, the Clyde Culbertson Professor of Biology in IU Bloomington's College of Arts and Sciences. "One cell contains all of the old cell wall and surface molecules, including those with damage. In contrast, the other cell is composed of newly synthesized, relatively pristine material."

Ensuring that some cells are composed of newly synthesized surface molecules may help bacteria vary their surface composition, and the ability to do so rapidly is thought to be advantageous for adapting to new environments. Since the defense systems of many plant and animal hosts recognize bacterial cell surfaces, rapid modification of the cell surface may allow bacteria like those used in the experiments to evade detection by the host cell's defense systems.

"These findings make it abundantly clear that the widely accepted binary fission model is not a general rule and suggest that polar growth may be broadly distributed," said IU biology professor Clay Fuqua, one of the IU co-authors. "Therefore, future work aimed at understanding the molecular mechanism underlying polar growth should provide attractive targets for the development of new antibacterial strategies."

Understanding the mechanisms of has enabled advances in strategies to limit the proliferation of bacteria that cause disease. Penicillin, for example, targets actively growing cells by directly inhibiting the proteins responsible for the synthesis of the and that are required for cell growth. New insights into bacterial cell growth have also been utilized to promote growth of certain used in oil spill remediation and eradicating disease-carrying mosquitoes.

Explore further: Environmental pollutants make worms susceptible to cold

More information: "Polar growth in the Alphaproteobacterial order Rhizobiales" Proceedings of the National Academy of Sciences Jan 17, 2012.

Related Stories

New paper sheds light on bacterial cell wall recycling

Sep 08, 2008

A new paper by a team of researchers led by Shahriar Mobashery, Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell ...

Bacterial roundabouts determine cell shape

Jun 03, 2011

Almost all bacteria owe their structure to an outer cell wall that interacts closely with the supporting MreB protein inside the cell. As scientists at the Max Planck Institute for Biochemistry and at the ...

Proteins could offer novel antibiotic target

Oct 06, 2011

Bacteria are single-celled organisms that inhabit almost every environment on the planet, including the bodies of humans and animals. The cell wall maintains the structural integrity of the cell, and enables ...

Efficient crowd control in bacterial colonies

Oct 30, 2007

Bacterial cells form colonies with complex organization (aka biofilms), particularly in response to hostile environmental conditions. Recent studies have shown that biofilm development occurs when bacterial cells seek out ...

Scientists explore new window on the origins of life

Feb 12, 2009

(PhysOrg.com) -- The remarkable behaviour of bacteria that have been forced to live without their protective wall has allowed Newcastle University scientists to open a new window on the origins of life on earth.

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Interactions of Earth's smallest players have global impact

Sep 19, 2014

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0